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Background: The Multi-Armed Bandit (MAB) Problem Problem Formulation

Background

Examples

Product recommendation to maximize sales

Ad placement to maximize click through rate

Classical Problem and Objective

Given N arms with unknown reward
distribution

Pull arms sequentially to maximize total
expected reward over certain horizon T
At each round t ∈ [T ]:

Player selects exactly one action at
Player observes gain rat ,t

Goal: Minimize cumulative regret

RA(T ) =

(
max
i∈[N]

E

[
T∑
t=1

ri,t

])
− E

[
T∑
t=1

rat ,t

]

Stochastic generation of rewards vs.
adversarial setting

Recent developments: Cost ci,t and multiple
plays K
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Background: The Multi-Armed Bandit (MAB) Problem Contributions
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Algorithm Upper Bound Lower Bound Setting Authors
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Stochastic MAB with Multiple Play and Budget Constraints Setup

Setup

Problem Description

Bandit with N distinct arms

Each arm i has unknown cost and reward distributions with means 0 < µi
r ≤ 1 and

0 < cmin ≤ µi
c ≤ 1

Realizations of costs ci,t ∈ [cmin, 1] and rewards ri,t ∈ [0, 1] are i.i.d.

Initial budget B > 0 to pay for the materialized costs
At each round t = 1, . . . , τA(B):

Select exactly 1 ≤ K ≤ N arms into at
Observe individual costs {ci,t | i ∈ at} and rewards {ri,t | i ∈ at}
Terminate game if

∑
i∈at ci,t is greater than remaining budget

Goal

Minimize expected regret

RA(B) = E[GA∗(B)]− E[GA(B)]

Utilize modified UCB algorithm with upper confidence bounds:

Ui,t = µ̄i
t + ei,t

At each round, play K arms with K largest Ui,t

7 / 22
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Stochastic MAB with Multiple Play and Budget Constraints Algorithm UCB-MB

Algorithm UCB-MB

The Algorithm

Play all arms once to initialize bang-per-buck ratios for each arm

While B not exhausted, select K arms with K largest Ui,t

Theorem (Upper Bound on RA(B) for Algorithm UCB-MB)

For the definition of confidence bounds

Ui,t = µ̄i
t +

√
(K + 1) log t/ni,t(1 + 1/cmin)

cmin −
√

(K + 1) log t/ni,t
,

Algorithm UCB-MB achieves expected regret RA(B) = O(NK 4 logB).

Proof Idea

Step 1: Upper bound the number of times a non-optimal selection of arms is made
up to a fixed stopping time τA(B):

# suboptimal choices = O(NK 3 log τA(B))

Step 2: Relate algorithm UCB-MB and B to stopping time τA(B)

8 / 22
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Adversarial MAB with Multiple Play and Budget Constraints Upper Bounds on the Regret

Upper Bound on the Regret

Setup

Oblivious adversary ⇒ no assumptions on reward or cost distributions except
boundedness

Algorithm Exp3.M.B

Initialize weights wi = 1 for i = 1, . . . ,N
For each round t = 1, . . . , τA(B):

Cap weights that are “too large”

wi (t) = v(t) for i ∈ S̃(t) = {i ∈ [N] | wi (t) > vt}

v(t)←
{
vt

∣∣∣ vt(1− γ)∑N
i=1 vt · 1(wi (t) ≥ vt) + wi (t) · 1(wi (t) < vt)

=
1

K
−
γ

N

}

Calculate probabilities pi (t) = K

(
(1− γ) w̃i (t)∑N

j=1 w̃j (t)
+ γ

N

)
Play arms at ∼ p1, . . . , pN
Update weights:

r̂i (t) = ri (t)/pi (t) · 1(i ∈ at)

ĉi (t) = ci (t)/pi (t) · 1(i ∈ at)

wi (t + 1) = wi (t) exp

[
Kγ

N
[r̂i (t)− ĉi (t)]1i∈S̃(t)

]
10 / 22



Adversarial MAB with Multiple Play and Budget Constraints Upper Bounds on the Regret

Upper Bound on the Regret

Setup

Oblivious adversary ⇒ no assumptions on reward or cost distributions except
boundedness

Algorithm Exp3.M.B

Initialize weights wi = 1 for i = 1, . . . ,N
For each round t = 1, . . . , τA(B):

Cap weights that are “too large”

wi (t) = v(t) for i ∈ S̃(t) = {i ∈ [N] | wi (t) > vt}

v(t)←
{
vt

∣∣∣ vt(1− γ)∑N
i=1 vt · 1(wi (t) ≥ vt) + wi (t) · 1(wi (t) < vt)

=
1

K
−
γ

N

}

Calculate probabilities pi (t) = K

(
(1− γ) w̃i (t)∑N

j=1 w̃j (t)
+ γ

N

)
Play arms at ∼ p1, . . . , pN
Update weights:

r̂i (t) = ri (t)/pi (t) · 1(i ∈ at)
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[r̂i (t)− ĉi (t)]1i∈S̃(t)

]
10 / 22



Adversarial MAB with Multiple Play and Budget Constraints Upper Bounds on the Regret

Upper Bound on the Regret (cont’d.)

Analysis of Algorithm Exp3.M.B

Theorem (Upper Bound on RA(B) for Algorithm Exp3.M.B)

Algorithm Exp3.M.B achieves cumulative regret RA(B) = O(
√

BN log(N/K)).

Proof Idea

Modify existing proof techniques7:
Step 1: Assume fixed time horizon T = max(τA(B), τA∗ (B))
Step 2: Relate T to budget B

Remarks

Our bound recovers previous findings for the following special cases with fixed T :
Recovers O(

√
BN log N) bound for K = 18

Recovers O(
√

TN log N) bound from for K = 1, no costs / budget9

7T. Uchiya, A. Nakamura, and M. Kudo. “Algorithms for Adversarial Bandit Problems with Multiple Plays”. In: International Conference on
Algorithmic Learning Theory (2010), pp. 375–389; P. Auer et al. “The Nonstochastic Multi-Armed Bandit Problem”. In: SIAM Journal on Computing 32
(2002), pp. 48–77.

8T. Uchiya, A. Nakamura, and M. Kudo. “Algorithms for Adversarial Bandit Problems with Multiple Plays”. In: International Conference on
Algorithmic Learning Theory (2010), pp. 375–389.

9P. Auer, N. Cesa-Bianchi, and P. Fischer. “Finite-Time Analysis of the Multiarmed Bandit Problem”. In: Machine Learning 47 (2002), pp. 235–256.
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Lower Bound on the Regret

Theorem (Lower Bound on RA(B) for Algorithm Exp3.M.B)

The weak regret of Algorithm Exp3.M.B is at least

R ≥ min

(
c

3/2
min (1− K/N)2

8
√

log(4/3)

√
NB

K
,
B(1− K/N)

8

)
.

This bound is of order Ω((1− K/N)2
√

NB/K).

Proof Idea

Step 1: Derive auxiliary lemma. Select K out of N arms at random to be “good”
arms with ri (t) ∼ Bern(1/2 + ε); ci (t) = cmin w.p. 1/2 + ε, ci (t) = 1 w.p. 1/2− ε

Lemma

Let f : {{0, 1}, {cmin, 1}}τmax → [0,M] be any function defined on reward and cost
sequences {r, c} of length less than or equal τmax = B

Kcmin
. Then for the best action set a∗:

Ea∗ [f (r, c)] ≤ Eu[f (r, c)] +
Bc
−3/2
min

2

√
−Eu[Na∗ ] log(1− 4ε2),
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Lower Bound on the Regret (cont’d.)

Proof Idea (cont’d.)

Step 2: Notice there exist
(
N
K

)
unique combinations of K tuples.

Let C([N],K) denote the set of all such subsets10

Let E∗[·] denote the expected value w.r.t. uniform assignment of “good” arms.

E∗[Gmax] =

(
1

2
+ ε

)
KE∗[τA(B), ]

Ea∗ [GA] =
1

2
KEa∗ [τA(B)] + εEa∗ [Na∗ ],

E∗[GA] =
1(N
K

) ∑
a∗∈C([N],K)

Ea∗ [GA] =
1

2
KE∗[τA(B)] +

ε(N
K

) ∑
a∗∈C([N],K)

Ea∗ [Na∗ ].

Step 3: Use previous lemma to bound E∗[Gmax − GA]:

E∗[Gmax − GA] ≥ εB
(

1− K

N

)
− 2εB

c
3/2
min

√
BK

N
log(4/3).

Step 4: Tune ε to optimize bound:

ε = min

(
1

4
,

c
3/2
min

4 log(4/3)
(1− K/N)

√
N

BK

)
.

10T. Uchiya, A. Nakamura, and M. Kudo. “Algorithms for Adversarial Bandit Problems with Multiple Plays”. In: International Conference on
Algorithmic Learning Theory (2010), pp. 375–389.
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High Probability Bound on the Regret

Algorithm Exp3.P.M.B
Modification of Algorithm Exp3.M.B:

Initialize parameter α = 2
√

6
√

(N − K)/(N − 1) log (NB/(Kcminδ)).

Initialize weights wi for i ∈ [N] : wi (1) = exp
(
αγK2

√
B/(NKcmin)/3

)
.

Update weights for i ∈ [N] as follows:

wi (t + 1) = wi (t) exp

[
1i 6∈S̃(t)

γK

3N

(
r̂i (t)− ĉi (t) +

α
√
Kcmin

pi (t)
√
NB

)]
.

Theorem (High Probability Upper Bound on RA(B) for Algorithm Exp3.P.M.B)

For the multiple play algorithm (1 ≤ K ≤ N) and the budget B > 0, the following bound
on the regret holds with probability at least 1− δ:

R ≤ 2
√

3

√
NB(1− cmin)

cmin
log

N

K
+ 4
√

6
N − K

N − 1
log

(
NB

Kcminδ

)

+ 2
√

6(1 + K 2)

√
N − K

N − 1

NB

Kcmin
log

(
NB

Kcminδ

)

= O

(
K 2

√
NB

K

N − K

N − 1
log

(
NB

Kδ

)
+

N − K

N − 1
log

(
NB

Kδ

))
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r̂i (t)− ĉi (t) +

α
√
Kcmin

pi (t)
√
NB

)]
.

Theorem (High Probability Upper Bound on RA(B) for Algorithm Exp3.P.M.B)

For the multiple play algorithm (1 ≤ K ≤ N) and the budget B > 0, the following bound
on the regret holds with probability at least 1− δ:

R ≤ 2
√

3

√
NB(1− cmin)

cmin
log

N

K
+ 4
√

6
N − K

N − 1
log

(
NB

Kcminδ

)

+ 2
√

6(1 + K 2)

√
N − K

N − 1

NB

Kcmin
log

(
NB

Kcminδ

)

= O

(
K 2

√
NB

K

N − K

N − 1
log

(
NB

Kδ

)
+

N − K

N − 1
log

(
NB

Kδ
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High Probability Bound on the Regret (cont’d.)

Theorem (High Probability Upper Bound on RA(B) for Algorithm Exp3.P.M.B)

For the multiple play algorithm (1 ≤ K ≤ N) and the budget B > 0, the following bound
on the regret holds with probability at least 1− δ:

R = O
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K 2

√
NB

K

N − K

N − 1
log

(
NB

Kδ

)
+

N − K

N − 1
log

(
NB

Kδ

))

Remark

Recovers O(
√

NT log(NT/δ) + log(NT/δ)) bound11 for K = 1, no costs

Proof Idea

Step 1: Derive upper confidence bound Û on Gmax that holds w .h.p.

Step 2: Lower bound GExp3.P.M.B as function of Û

Step 3: Combine to obtain upper bound on Gmax − GExp3.P.M.B

11P. Auer, N. Cesa-Bianchi, and P. Fischer. “Finite-Time Analysis of the Multiarmed Bandit Problem”. In: Machine Learning 47 (2002), pp. 235–256.
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High Probability on the Regret (cont’d.)

Proof Idea (cont’d.)

Step 1: Derive upper confidence bound Û on Gmax that holds w .h.p.:
Define upper confidence bound:

Û∗ =
∑
i∈a∗

ασ̂i +

τa∗ (B)∑
t=1

(r̂i (t)− ĉi (t))


For 2

√
6
√

N−K
N−1

log NB
Kcminδ

≤ α ≤ 12
√

NB
Kcmin

, we can show P
(
Û∗ > Gmax − B

)
≥ 1− δ

Step 2: Lower bound GExp3.P.M.B as function of Û:

For α ≤ 2
√

NB
Kcmin

, the gain of Algorithm Exp3.P.M.B is bounded below as follows:

GExp3.P.M.B ≥
(

1− γ −
2γ

3

1− cmin

cmin

)
Û∗ −

3N

γ
log

N

K
− 2α2 − α(1 + K2)

BN

Kcmin
.

Step 3: Combine to obtain upper bound on Gmax − GExp3.P.M.B, tune γ:

γ = min

((
1 +

2

3

1− cmin

cmin

)−1

,

(
3N log(N/K)

(Gmax − B) (1 + 2(1− cmin)/(3cmin))
,

)1/2
)
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Define upper confidence bound:
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