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Introduction to Peer Effects

Background

Social comparisons influence people’s behavior:
Conform to a standard
Receive social acclaim
Other people’s choices can be informative
(recommender systems)

Network effects in social networks and platforms
Positive externalities

Impact of Peer Effects on energy consumption?1

Various Randomized Controlled Trials (RCTs) to investigate such effects2

High consumers reduce most, efficient ones show “boomerang effect”

Question

How can peer effects in energy networks be exploited for profit-maximization of the
load serving entity?

Methodology

Develop a game between utility and electricity users, introducing peer effects

1Hunt Allcott. “Social Norms and Energy Conservation”. In: Journal of Public Economics 95.9 (2011), pp. 1082–1095.
2Ian Ayres, Sophie Raseman, and Alice Shih. “Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential

Energy Usage”. In: NBER Working Paper No. 15386 (2009).
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Two-Stage Game-Theoretic Model

Consumers
Set of consumers I = {1, . . . , n} with utility function

ui = aixi − bix
2
i − pixi + γixi

(∑
j∈I

wijxj − xi

)
.

Interaction matrix W ∈ [0, 1]n×n

Each user observes price p∗i and x−i and maximizes utility:

x∗i = arg max
xi≥0

ui (xi , x−i , γi ,W )

Load-Serving Entity
Profit: Π =

∑
i∈I pixi − cix

2
i

Utility determines optimal price p∗ to maximize Π
Takes into account users’ consumption decisions as a function of price p

p∗ = arg max
p≥0

∑
i∈I

pixi (pi )− cix
2
i (pi )

Subgame-Perfect Equilibrium
Nash Equilibria of second stage game and first stage game
Can be determined with “backward induction”

3 / 11



Two-Stage Game-Theoretic Model

Consumers
Set of consumers I = {1, . . . , n} with utility function

ui = aixi − bix
2
i − pixi + γixi

(∑
j∈I

wijxj − xi

)
.

Interaction matrix W ∈ [0, 1]n×n

Each user observes price p∗i and x−i and maximizes utility:

x∗i = arg max
xi≥0

ui (xi , x−i , γi ,W )

Load-Serving Entity
Profit: Π =

∑
i∈I pixi − cix

2
i

Utility determines optimal price p∗ to maximize Π
Takes into account users’ consumption decisions as a function of price p

p∗ = arg max
p≥0

∑
i∈I

pixi (pi )− cix
2
i (pi )

Subgame-Perfect Equilibrium
Nash Equilibria of second stage game and first stage game
Can be determined with “backward induction”

3 / 11



Two-Stage Game-Theoretic Model

Consumers
Set of consumers I = {1, . . . , n} with utility function

ui = aixi − bix
2
i − pixi + γixi

(∑
j∈I

wijxj − xi

)
.

Interaction matrix W ∈ [0, 1]n×n

Each user observes price p∗i and x−i and maximizes utility:

x∗i = arg max
xi≥0

ui (xi , x−i , γi ,W )

Load-Serving Entity
Profit: Π =

∑
i∈I pixi − cix

2
i

Utility determines optimal price p∗ to maximize Π
Takes into account users’ consumption decisions as a function of price p

p∗ = arg max
p≥0

∑
i∈I

pixi (pi )− cix
2
i (pi )

Subgame-Perfect Equilibrium
Nash Equilibria of second stage game and first stage game
Can be determined with “backward induction”

3 / 11



Two-Stage Game-Theoretic Model

Consumers
Set of consumers I = {1, . . . , n} with utility function

ui = aixi − bix
2
i − pixi + γixi

(∑
j∈I

wijxj − xi

)
.

Interaction matrix W ∈ [0, 1]n×n

Each user observes price p∗i and x−i and maximizes utility:

x∗i = arg max
xi≥0

ui (xi , x−i , γi ,W )

Load-Serving Entity
Profit: Π =

∑
i∈I pixi − cix

2
i

Utility determines optimal price p∗ to maximize Π
Takes into account users’ consumption decisions as a function of price p

p∗ = arg max
p≥0

∑
i∈I

pixi (pi )− cix
2
i (pi )

Subgame-Perfect Equilibrium
Nash Equilibria of second stage game and first stage game
Can be determined with “backward induction”

3 / 11



Two-Stage Game-Theoretic Model

Consumers
Set of consumers I = {1, . . . , n} with utility function

ui = aixi − bix
2
i − pixi + γixi

(∑
j∈I

wijxj − xi

)
.

Interaction matrix W ∈ [0, 1]n×n

Each user observes price p∗i and x−i and maximizes utility:

x∗i = arg max
xi≥0

ui (xi , x−i , γi ,W )

Load-Serving Entity
Profit: Π =

∑
i∈I pixi − cix

2
i

Utility determines optimal price p∗ to maximize Π
Takes into account users’ consumption decisions as a function of price p

p∗ = arg max
p≥0

∑
i∈I

pixi (pi )− cix
2
i (pi )

Subgame-Perfect Equilibrium
Nash Equilibria of second stage game and first stage game
Can be determined with “backward induction”

3 / 11



Two-Stage Game-Theoretic Model

Consumers
Set of consumers I = {1, . . . , n} with utility function

ui = aixi − bix
2
i − pixi + γixi

(∑
j∈I

wijxj − xi

)
.

Interaction matrix W ∈ [0, 1]n×n

Each user observes price p∗i and x−i and maximizes utility:

x∗i = arg max
xi≥0

ui (xi , x−i , γi ,W )

Load-Serving Entity
Profit: Π =

∑
i∈I pixi − cix

2
i

Utility determines optimal price p∗ to maximize Π
Takes into account users’ consumption decisions as a function of price p

p∗ = arg max
p≥0

∑
i∈I

pixi (pi )− cix
2
i (pi )

Subgame-Perfect Equilibrium
Nash Equilibria of second stage game and first stage game
Can be determined with “backward induction”

3 / 11



Two-Stage Game-Theoretic Model

Consumers
Set of consumers I = {1, . . . , n} with utility function

ui = aixi − bix
2
i − pixi + γixi

(∑
j∈I

wijxj − xi

)
.

Interaction matrix W ∈ [0, 1]n×n

Each user observes price p∗i and x−i and maximizes utility:

x∗i = arg max
xi≥0

ui (xi , x−i , γi ,W )

Load-Serving Entity
Profit: Π =

∑
i∈I pixi − cix

2
i

Utility determines optimal price p∗ to maximize Π
Takes into account users’ consumption decisions as a function of price p

p∗ = arg max
p≥0

∑
i∈I

pixi (pi )− cix
2
i (pi )

Subgame-Perfect Equilibrium
Nash Equilibria of second stage game and first stage game
Can be determined with “backward induction”

3 / 11



Two-Stage Game-Theoretic Model

Consumers
Set of consumers I = {1, . . . , n} with utility function

ui = aixi − bix
2
i − pixi + γixi

(∑
j∈I

wijxj − xi

)
.

Interaction matrix W ∈ [0, 1]n×n

Each user observes price p∗i and x−i and maximizes utility:

x∗i = arg max
xi≥0

ui (xi , x−i , γi ,W )

Load-Serving Entity
Profit: Π =

∑
i∈I pixi − cix

2
i

Utility determines optimal price p∗ to maximize Π
Takes into account users’ consumption decisions as a function of price p

p∗ = arg max
p≥0

∑
i∈I

pixi (pi )− cix
2
i (pi )

Subgame-Perfect Equilibrium
Nash Equilibria of second stage game and first stage game
Can be determined with “backward induction”

3 / 11



Two-Stage Game-Theoretic Model

Consumers
Set of consumers I = {1, . . . , n} with utility function

ui = aixi − bix
2
i − pixi + γixi

(∑
j∈I

wijxj − xi

)
.

Interaction matrix W ∈ [0, 1]n×n

Each user observes price p∗i and x−i and maximizes utility:

x∗i = arg max
xi≥0

ui (xi , x−i , γi ,W )

Load-Serving Entity
Profit: Π =

∑
i∈I pixi − cix

2
i

Utility determines optimal price p∗ to maximize Π
Takes into account users’ consumption decisions as a function of price p

p∗ = arg max
p≥0

∑
i∈I

pixi (pi )− cix
2
i (pi )

Subgame-Perfect Equilibrium
Nash Equilibria of second stage game and first stage game
Can be determined with “backward induction”

3 / 11



Price and Consumption Equilibria

p∗ =
a

2
+ CZ

a

2
−W>ΓZ

a

4
+ ΓWZ

a

4
,

x∗ =

(
C + B + 2Γ−

W>Γ

2
−

ΓW

2

)−1
a

2
,

Z =

[
2Γ + B + C −

(
W>Γ

2
+

ΓW

2

)]−1

.

Perfect Price Discrimination

Complete knowledge of a and b

Incentive for strongly influential users
W>Γ

Additional cost for strongly influenced
users ΓW

p∗u =

[
1−

1>A−11

2 · 1>
(
A−1 + A−1CA−1

)
1

]
ā,

x∗ = A−1

[
a−

(
1−

1>A−11

2 · 1>
(
A−1 + A−1CA−1

)
1

)
ā1

]
,

A = B + 2Γ− ΓW , ā =
n∑

i=1

ai/n.

Single Price, Complete Information

Complete knowledge of a and b

Utility can only set a single price pu
valid for all users

p̃∗u ≥
E[a]

2

[
1 +

c

n
1> [2Γ + (2E[b] + c)I − ΓW ]−1 1

]
,

E[x̃i ] ≥
E[a]− p̃∗u,LB

n
· 1> (2Γ + 2E[b]I − ΓW )−1 1.

Single Price, Incomplete Information Utility only knows expectations of a
and b: E[a], E[b]

Utility can only set a single price pu
valid for all users

Lower bound on profit-maximizing price
4 / 11
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ā,

x∗ = A−1

[
a−

(
1−

1>A−11

2 · 1>
(
A−1 + A−1CA−1

)
1

)
ā1
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ā,

x∗ = A−1

[
a−

(
1−

1>A−11

2 · 1>
(
A−1 + A−1CA−1

)
1

)
ā1
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ā1

]
,

A = B + 2Γ− ΓW , ā =
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ā1

]
,

A = B + 2Γ− ΓW , ā =
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Theoretical Statements

Theorem (Monotonicity of Consumption Equilibrium)

If ai = a, bi = b, and γi = γ ∀ i ∈ I, then x∗i is strictly monotonically decreasing in γ
independent of the network topology W .

Proof Sketch.

Take derivative dx
dγ

= − 1
4γ(b+γ)

K−1F−1(a− p) and exploit diagonal dominance of K and

F . Show that all elements (K−1F−1)ij are positive.

Theorem (Influence of High Consumer)

Let wij =
(∑

j∈I 1wij>0

)−1

, bi = b, γi = γ and ai − pi = α for N = {i ∈ I \ j}. Let j be

the “high” consumer. If aj − pj = ᾱ > nα, then for each neighbor i of j , x∗i is initially
increasing in γ, whereas x∗j is strictly monotonically decreasing in γ.

Proof Sketch.

Evaluate dx
dγ

at γ = 0 and use definition of peer effects.
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Theoretical Statements (cont’d.)

Theorem (Targeted Peer Effects)

For n = 2 users, the network effect reduces the sum of their consumptions iff

b1 ≤
(a1 − p) (4b2 + 3γ)

2(a2 − p)
and b2 ≤

(a2 − p) (4b1 + 3γ)

2(a1 − p)
.

This can be generalized to n ≥ 3.

Proof Sketch.

Utility maximizing response of user i is x∗i =
ai−pi+γi

∑
j∈I wij xj

2(bi+γi )
. Result follows.

Theorem (Efficiency)

The consumption equilibrium x∗ is inefficient as the social welfare S attained is
suboptimal. Specifically, x∗i < xo

i ∀ i ∈ I, where xo maximizes social welfare:

xo =

(
C +

B

2
+ Γ− W>Γ

2
− ΓW

2

)−1
a

2
.

Allocating users per-unit subsidies si = (bi + γi )x
2
i /2 can restore the social optimum.
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Network Uncertainty

Unknown Network Structure

Let W = W> and Γ = γI
Monopolist only has estimate W̃ , where W̃ = W̃>

Lower bound on expected profit Π̃∗ under perfect price discrimination:

Π̃∗

Π∗
≥ λmin(C + B + 2Γ− ΓW )

λmax(C + B + 2Γ− ΓW ) + γ‖W − W̃ ‖2

Simulation for n = 24 fully connected users:

0 2 4 6 8 10 12
Number of Correct Guesses
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User Selection Problem

Profit Maximization with User Selection
Which users should be exposed to peer effects to maximize profit?
Assume p is exogenously set (by the Public Utilities Commission)
Formulate profit-maximizing problem:

maximize
δ1,...,δn

n∑
i=1

pxi − cix
2
i

subject to x = (B + 2∆Γ−∆ΓW )−1 (a− p1)

n∑
i=1

δi = m, δi ∈ {0, 1}

∆ = diag(δ1, . . . , δn)

MIQCP cannot be solved analytically

Use heuristic for targeting: Only expose
highest and lowest consumers to effects

0 1 2 3 4 5 6 7 8 9 10
55.2

55.4

55.6

E[Π]m=0

Monopolist Profit, Analytical Π∗ (dashed) vs. Heuristic Πh (solid)
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Conclusion

Summary

Setup of two-stage game-theoretic model for a network of electricity consumers

Consumers seek to maximize individual utility function and derive utility from peer
comparisons

Investigated profit-maximizing pricing schemes (subgame-perfect equilibria)

Heuristic approach for profit maximization problem of utility

Future Work

Extend setting to sequential problem

Incorporate fluctuating wholesale electricity prices

Model peer effects in auction settings (incentive compabitility, ...)
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