How Peer Effects Influence Energy Consumption

D.P. Zhou, M. Roozbehani, M.A. Dahleh, C.J. Tomlin

[datong.zhou, tomlin]@berkeley.edu, [mardavij, dahleh]@mit.edu

December 14, 2017

Background

- Social comparisons influence people's behavior:
 - Conform to a standard
 - Receive social acclaim
 - Other people's choices can be informative (recommender systems)
- Network effects in social networks and platforms
 - Positive externalities
 - Impact of Peer Effects on energy consumption?¹
 - Various Randomized Controlled Trials (RCTs) to investigate such effects²
 - High consumers reduce most, efficient ones show "boomerang effect"
- Question
 - How can peer effects in energy networks be exploited for profit-maximization of the load serving entity?

Methodology

¹Hunt Allcott. "Social Norms and Energy Conservation". In: Journal of Public Economics 95.9 (2011), pp. 1082–1095.

²Ian Ayres, Sophie Raseman, and Alice Shih. "Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential Energy Usage". In: NBER Working Paper No. 15386 (2009).

Background

- Social comparisons influence people's behavior:
 - Conform to a standard
 - Receive social acclaim
 - Other people's choices can be informative (recommender systems)
- Network effects in social networks and platforms
 - Positive externalities
 - Impact of Peer Effects on energy consumption?¹
 - Various Randomized Controlled Trials (RCTs) to investigate such effects²
 - High consumers reduce most, efficient ones show "boomerang effect"

Question

• How can peer effects in energy networks be exploited for profit-maximization of the load serving entity?

Methodology

¹Hunt Allcott. "Social Norms and Energy Conservation". In: Journal of Public Economics 95.9 (2011), pp. 1082–1095.

²Ian Ayres, Sophie Raseman, and Alice Shih. "Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential Energy Usage". In: NBER Working Paper No. 15386 (2009).

Background

- Social comparisons influence people's behavior:
 - Conform to a standard
 - Receive social acclaim
 - Other people's choices can be informative (recommender systems)
- Network effects in social networks and platforms
 - Positive externalities
 - Impact of Peer Effects on energy consumption?¹
 - Various Randomized Controlled Trials (RCTs) to investigate such effects²
 - High consumers reduce most, efficient ones show "boomerang effect"

Question

• How can peer effects in energy networks be exploited for profit-maximization of the load serving entity?

Methodology

¹Hunt Allcott. "Social Norms and Energy Conservation". In: Journal of Public Economics 95.9 (2011), pp. 1082–1095.

²Ian Ayres, Sophie Raseman, and Alice Shih. "Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential Energy Usage". In: NBER Working Paper No. 15386 (2009).

Background

- Social comparisons influence people's behavior:
 - Conform to a standard
 - Receive social acclaim
 - Other people's choices can be informative (recommender systems)
- Network effects in social networks and platforms
 - Positive externalities
 - Impact of Peer Effects on energy consumption?¹
 - Various Randomized Controlled Trials (RCTs) to investigate such effects²
 - High consumers reduce most, efficient ones show "boomerang effect"

Question

• How can peer effects in energy networks be exploited for profit-maximization of the load serving entity?

Methodology

¹Hunt Allcott. "Social Norms and Energy Conservation". In: Journal of Public Economics 95.9 (2011), pp. 1082–1095.

²Ian Ayres, Sophie Raseman, and Alice Shih. "Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential Energy Usage". In: NBER Working Paper No. 15386 (2009).

Background

- Social comparisons influence people's behavior:
 - Conform to a standard
 - Receive social acclaim
 - Other people's choices can be informative (recommender systems)
- Network effects in social networks and platforms
 - Positive externalities
 - Impact of Peer Effects on energy consumption?¹
 - Various Randomized Controlled Trials (RCTs) to investigate such effects²
 - High consumers reduce most, efficient ones show "boomerang effect"

Question

• How can peer effects in energy networks be exploited for profit-maximization of the load serving entity?

Methodology

¹Hunt Allcott. "Social Norms and Energy Conservation". In: Journal of Public Economics 95.9 (2011), pp. 1082–1095.

²Ian Ayres, Sophie Raseman, and Alice Shih. "Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential Energy Usage". In: NBER Working Paper No. 15386 (2009).

Consumers

• Set of consumers $\mathcal{I} = \{1, \dots, n\}$ with utility function

$$u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right).$$

- Interaction matrix $W \in [0,1]^{n \times n}$
- Each user observes price p^{*}_i and x_{-i} and maximizes utility:

$$x_i^* = \arg \max_{x_i \ge 0} u_i(x_i, \mathbf{x}_{-i}, \gamma_i, W)$$

Load-Serving Entity

- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i c_i x_i^2$
- Utility determines optimal price p^{*} to maximize Π
- Takes into account users' consumption decisions as a function of price **p**

$$\mathbf{p}^* = \arg \max_{\mathbf{p} \ge \mathbf{0}} \sum_{i \in \mathcal{I}} p_i x_i(p_i) - c_i x_i^2(p_i)$$

- Nash Equilibria of second stage game and first stage game
- Can be determined with "backward induction"

Consumers

• Set of consumers $\mathcal{I} = \{1, \ldots, n\}$ with utility function

$$u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right).$$

- Interaction matrix $W \in [0,1]^{n \times n}$
- Each user observes price p^{*}_i and x_{-i} and maximizes utility:

$$x_i^* = \arg \max_{x_i \ge 0} u_i(x_i, \mathbf{x}_{-i}, \gamma_i, W)$$

Load-Serving Entity

- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i c_i x_i^2$
- Utility determines optimal price p^{*} to maximize Π
- Takes into account users' consumption decisions as a function of price p

$$\mathbf{p}^* = \arg \max_{\mathbf{p} \ge \mathbf{0}} \sum_{i \in \mathcal{I}} p_i x_i(p_i) - c_i x_i^2(p_i)$$

- Subgame-Perfect Equilibrium
 - Nash Equilibria of second stage game and first stage game
 - Can be determined with "backward induction"

Consumers

• Set of consumers $\mathcal{I} = \{1, \dots, n\}$ with utility function

$$u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right).$$

- Interaction matrix $W \in [0,1]^{n \times n}$
- Each user observes price p_i^* and \mathbf{x}_{-i} and maximizes utility:

$$x_i^* = \arg \max_{x_i \ge 0} u_i(x_i, \mathbf{x}_{-i}, \gamma_i, W)$$

Load-Serving Entity

- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i c_i x_i^2$
- Utility determines optimal price p^{*} to maximize Π
- Takes into account users' consumption decisions as a function of price p

$$\mathbf{p}^* = \arg \max_{\mathbf{p} \ge \mathbf{0}} \sum_{i \in \mathcal{I}} p_i x_i(p_i) - c_i x_i^2(p_i)$$

- Subgame-Perfect Equilibrium
 - Nash Equilibria of second stage game and first stage game
 - Can be determined with "backward induction"

Consumers

• Set of consumers $\mathcal{I} = \{1, \ldots, n\}$ with utility function

$$u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right).$$

- Interaction matrix $W \in [0,1]^{n \times n}$
- Each user observes price p_i^* and \mathbf{x}_{-i} and maximizes utility:

$$x_i^* = \arg \max_{x_i \ge 0} u_i(x_i, \mathbf{x}_{-i}, \gamma_i, W)$$

Load-Serving Entity

- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i c_i x_i^2$
- Utility determines optimal price p^{*} to maximize Π
- Takes into account users' consumption decisions as a function of price p

$$\mathbf{p}^* = \arg \max_{\mathbf{p} \ge \mathbf{0}} \sum_{i \in \mathcal{I}} p_i x_i(p_i) - c_i x_i^2(p_i)$$

- Nash Equilibria of second stage game and first stage game
- Can be determined with "backward induction"

Consumers

• Set of consumers $\mathcal{I} = \{1, \ldots, n\}$ with utility function

$$u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right).$$

- Interaction matrix $W \in [0,1]^{n \times n}$
- Each user observes price p_i^* and \mathbf{x}_{-i} and maximizes utility:

$$x_i^* = \arg \max_{x_i \ge 0} u_i(x_i, \mathbf{x}_{-i}, \gamma_i, W)$$

Load-Serving Entity

- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i c_i x_i^2$
- Utility determines optimal price p^{*} to maximize Π
- Takes into account users' consumption decisions as a function of price p

$$\mathbf{p}^* = \arg \max_{\mathbf{p} \ge 0} \sum_{i \in \mathcal{I}} p_i x_i(p_i) - c_i x_i^2(p_i)$$

- Subgame-Perfect Equilibrium
 - Nash Equilibria of second stage game and first stage game
 - Can be determined with "backward induction"

Consumers

• Set of consumers $\mathcal{I} = \{1, \ldots, n\}$ with utility function

$$u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right).$$

- Interaction matrix $W \in [0,1]^{n \times n}$
- Each user observes price p_i^* and \mathbf{x}_{-i} and maximizes utility:

$$x_i^* = \arg \max_{x_i \ge 0} u_i(x_i, \mathbf{x}_{-i}, \gamma_i, W)$$

Load-Serving Entity

- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i c_i x_i^2$
- \bullet Utility determines optimal price \boldsymbol{p}^* to maximize Π
- $\bullet\,$ Takes into account users' consumption decisions as a function of price p

$$\mathbf{p}^* = \arg \max_{\mathbf{p} \ge \mathbf{0}} \sum_{i \in \mathcal{I}} p_i x_i(p_i) - c_i x_i^2(p_i)$$

- Nash Equilibria of second stage game and first stage game
- Can be determined with "backward induction"

Consumers

• Set of consumers $\mathcal{I} = \{1, \dots, n\}$ with utility function

$$u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right).$$

- Interaction matrix $W \in [0,1]^{n \times n}$
- Each user observes price p_i^* and \mathbf{x}_{-i} and maximizes utility:

$$x_i^* = \arg \max_{x_i \ge 0} u_i(x_i, \mathbf{x}_{-i}, \gamma_i, W)$$

Load-Serving Entity

- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i c_i x_i^2$
- \bullet Utility determines optimal price \boldsymbol{p}^* to maximize Π
- $\bullet\,$ Takes into account users' consumption decisions as a function of price p

$$\mathbf{p}^* = \arg \max_{\mathbf{p} \ge \mathbf{0}} \sum_{i \in \mathcal{I}} p_i x_i(p_i) - c_i x_i^2(p_i)$$

- Nash Equilibria of second stage game and first stage game
- Can be determined with "backward induction"

Consumers

• Set of consumers $\mathcal{I} = \{1, \dots, n\}$ with utility function

$$u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right).$$

- Interaction matrix $W \in [0,1]^{n \times n}$
- Each user observes price p_i^* and \mathbf{x}_{-i} and maximizes utility:

$$x_i^* = \arg \max_{x_i \ge 0} u_i(x_i, \mathbf{x}_{-i}, \gamma_i, W)$$

Load-Serving Entity

- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i c_i x_i^2$
- \bullet Utility determines optimal price \boldsymbol{p}^* to maximize Π
- $\bullet\,$ Takes into account users' consumption decisions as a function of price p

$$\mathbf{p}^* = \arg \max_{\mathbf{p} \ge \mathbf{0}} \sum_{i \in \mathcal{I}} p_i x_i(p_i) - c_i x_i^2(p_i)$$

- Nash Equilibria of second stage game and first stage game
- Can be determined with "backward induction"

Consumers

• Set of consumers $\mathcal{I} = \{1, \ldots, n\}$ with utility function

$$u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right).$$

- Interaction matrix $W \in [0,1]^{n \times n}$
- Each user observes price p_i^* and \mathbf{x}_{-i} and maximizes utility:

$$x_i^* = \arg \max_{x_i \ge 0} u_i(x_i, \mathbf{x}_{-i}, \gamma_i, W)$$

Load-Serving Entity

- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i c_i x_i^2$
- \bullet Utility determines optimal price \boldsymbol{p}^* to maximize Π
- $\bullet\,$ Takes into account users' consumption decisions as a function of price p

$$\mathbf{p}^* = \arg \max_{\mathbf{p} \ge \mathbf{0}} \sum_{i \in \mathcal{I}} p_i x_i(p_i) - c_i x_i^2(p_i)$$

- Nash Equilibria of second stage game and first stage game
- Can be determined with "backward induction"

Price and Consumption Equilibria

Perfect Price Discrimination

$$\mathbf{p}^* = \frac{\mathbf{a}}{2} + CZ \frac{\mathbf{a}}{2} - W^\top \Gamma Z \frac{\mathbf{a}}{4} + \Gamma WZ \frac{\mathbf{a}}{4},$$

$$\mathbf{x}^* = \left(C + B + 2\Gamma - \frac{W^\top \Gamma}{2} - \frac{\Gamma W}{2}\right)^{-1} \frac{\mathbf{a}}{2},$$

$$Z = \left[2\Gamma + B + C - \left(\frac{W^\top \Gamma}{2} + \frac{\Gamma W}{2}\right)\right]^{-1}.$$

$$\begin{array}{l} \begin{array}{l} \text{Single Price, Complete Information} \\ p_{u}^{*} = \left[1 - \frac{1^{\top}A^{-1}\mathbf{1}}{2\cdot\mathbf{1}^{\top}\left(A^{-1} + A^{-1}CA^{-1}\right)\mathbf{1}}\right]\bar{a}, \\ \mathbf{x}^{*} = A^{-1}\left[\mathbf{a} - \left(1 - \frac{1^{\top}A^{-1}\mathbf{1}}{2\cdot\mathbf{1}^{\top}\left(A^{-1} + A^{-1}CA^{-1}\right)\mathbf{1}}\right)\bar{a}\mathbf{1}\right], \\ A = B + 2\Gamma - \Gamma W, \qquad \bar{a} = \sum_{i=1}^{n} \bar{a}_{i}/n. \end{array}$$

$$\begin{split} & \overbrace{\tilde{\rho}_{u}^{*} \geq \frac{\mathbb{E}[a]}{2} \left[1 + \frac{c}{n} \mathbf{1}^{\top} \left[2\Gamma + (2\mathbb{E}[b] + c)I - \Gamma W \right]^{-1} \mathbf{1} \right],} \\ & \mathbb{E}[\tilde{x}_{j}] \geq \frac{\mathbb{E}[a] - \tilde{\rho}_{u, \text{LB}}^{*}}{n} \cdot \mathbf{1}^{\top} \left(2\Gamma + 2\mathbb{E}[b]I - \Gamma W \right)^{-1} \mathbf{1}. \end{split}$$

- $\bullet\,$ Complete knowledge of a and b
- Incentive for strongly influential users $W^{\top}\Gamma$
- Additional cost for strongly influenced users ΓW

- Complete knowledge of a and b
- Utility can only set a single price *p_u* valid for all users

- Utility only knows expectations of a and b: E[a], E[b]
- Utility can only set a single price *p_u* valid for all users
- Lower bound on profit-maximizing price

Price and Consumption Equilibria

Perfect Price Discrimination

$$\mathbf{p}^* = \frac{\mathbf{a}}{2} + CZ \frac{\mathbf{a}}{2} - W^\top \Gamma Z \frac{\mathbf{a}}{4} + \Gamma WZ \frac{\mathbf{a}}{4},$$

$$\mathbf{x}^* = \left(C + B + 2\Gamma - \frac{W^\top \Gamma}{2} - \frac{\Gamma W}{2}\right)^{-1} \frac{\mathbf{a}}{2},$$

$$Z = \left[2\Gamma + B + C - \left(\frac{W^\top \Gamma}{2} + \frac{\Gamma W}{2}\right)\right]^{-1}$$

Single Price, Complete Information

$$p_{u}^{*} = \left[1 - \frac{\mathbf{1}^{\top} A^{-1} \mathbf{1}}{2 \cdot \mathbf{1}^{\top} (A^{-1} + A^{-1} C A^{-1}) \mathbf{1}}\right] \bar{a},$$

$$\mathbf{x}^{*} = A^{-1} \left[\mathbf{a} - \left(1 - \frac{\mathbf{1}^{\top} A^{-1} \mathbf{1}}{2 \cdot \mathbf{1}^{\top} (A^{-1} + A^{-1} C A^{-1}) \mathbf{1}}\right) \bar{a} \mathbf{1}\right],$$

$$A = B + 2\Gamma - \Gamma W, \qquad \bar{a} = \sum_{i=1}^{n} a_i / n.$$

$$\begin{split} & \overbrace{\tilde{\rho}_{u}^{*} \geq \frac{\mathbb{E}[a]}{2} \left[1 + \frac{c}{n} \mathbf{1}^{\top} \left[2\Gamma + (2\mathbb{E}[b] + c)I - \Gamma W \right]^{-1} \mathbf{1} \right],} \\ & \mathbb{E}[\tilde{s}_{l}] \geq \frac{\mathbb{E}[a] - \tilde{\rho}_{u, \text{LB}}^{*}}{n} \cdot \mathbf{1}^{\top} \left(2\Gamma + 2\mathbb{E}[b]I - \Gamma W \right)^{-1} \mathbf{1}. \end{split}$$

- $\bullet\,$ Complete knowledge of a and b
- Incentive for strongly influential users $W^{\top}\Gamma$
- Additional cost for strongly influenced users ΓW

- $\bullet\,$ Complete knowledge of a and b
- Utility can only set a single price *p_u* valid for all users

- Utility only knows expectations of a and b: E[a], E[b]
- Utility can only set a single price *p_u* valid for all users
- Lower bound on profit-maximizing price

Price and Consumption Equilibria

Perfect Price Discrimination

$$\mathbf{p}^* = \frac{\mathbf{a}}{2} + CZ \frac{\mathbf{a}}{2} - W^\top \Gamma Z \frac{\mathbf{a}}{4} + \Gamma WZ \frac{\mathbf{a}}{4},$$

$$\mathbf{x}^* = \left(C + B + 2\Gamma - \frac{W^\top \Gamma}{2} - \frac{\Gamma W}{2}\right)^{-1} \frac{\mathbf{a}}{2},$$

$$Z = \left[2\Gamma + B + C - \left(\frac{W^\top \Gamma}{2} + \frac{\Gamma W}{2}\right)\right]^{-1}$$

$$p_{u}^{*} = \left[1 - \frac{\mathbf{1}^{\top} A^{-1} \mathbf{1}}{2 \cdot \mathbf{1}^{\top} (A^{-1} + A^{-1} C A^{-1}) \mathbf{1}}\right] \bar{a},$$

$$\mathbf{x}^{*} = A^{-1} \left[\mathbf{a} - \left(1 - \frac{\mathbf{1}^{\top} A^{-1} \mathbf{1}}{2 \cdot \mathbf{1}^{\top} (A^{-1} + A^{-1} C A^{-1}) \mathbf{1}}\right) \bar{a}\mathbf{1}\right],$$

$$A = B + 2\Gamma - \Gamma W, \qquad \bar{a} = \sum_{i=1}^{n} a_{i}/n.$$

$$\begin{split} & \frac{\mathsf{Single Price, Incomplete Information}}{\tilde{p}_u^* \geq \frac{\mathbb{E}[\mathbf{a}]}{2} \left[1 + \frac{c}{n} \mathbf{1}^\top \left[2\Gamma + (2\mathbb{E}[b] + c)I - \Gamma W \right]^{-1} \mathbf{1} \right],} \\ & \mathbb{E}[\tilde{x}_I] \geq \frac{\mathbb{E}[\mathbf{a}] - \tilde{\rho}_{u, \mathrm{LB}}^*}{n} \cdot \mathbf{1}^\top \left(2\Gamma + 2\mathbb{E}[b]I - \Gamma W \right)^{-1} \mathbf{1}. \end{split}$$

- $\bullet\,$ Complete knowledge of a and b
- Incentive for strongly influential users $W^{\top}\Gamma$
- Additional cost for strongly influenced users ΓW

- $\bullet\,$ Complete knowledge of a and b
- Utility can only set a single price *p_u* valid for all users

- Utility only knows expectations of a and b: E[a], E[b]
- Utility can only set a single price *p_u* valid for all users
- Lower bound on profit-maximizing price

Perfect Price Discrimination

$$\mathbf{p}^* = \frac{\mathbf{a}}{2} + CZ \frac{\mathbf{a}}{2} - W^{\top} \Gamma Z \frac{\mathbf{a}}{4} + \Gamma WZ \frac{\mathbf{a}}{4},$$

$$\mathbf{x}^* = \left(C + B + 2\Gamma - \frac{W^{\top} \Gamma}{2} - \frac{\Gamma W}{2}\right)^{-1} \frac{\mathbf{a}}{2},$$

$$Z = \left[2\Gamma + B + C - \left(\frac{W^{\top} \Gamma}{2} + \frac{\Gamma W}{2}\right)\right]^{-1}.$$

$$p_{u}^{*} = \left[1 - \frac{1^{\top}A^{-1}1}{2 \cdot 1^{\top}(A^{-1} + A^{-1}CA^{-1})\mathbf{1}}\right]\bar{a},$$

$$\mathbf{x}^{*} = A^{-1}\left[\mathbf{a} - \left(1 - \frac{1^{\top}A^{-1}\mathbf{1}}{2 \cdot 1^{\top}(A^{-1} + A^{-1}CA^{-1})\mathbf{1}}\right)\bar{a}\mathbf{1}\right],$$

$$A = B + 2\Gamma - \Gamma W, \qquad \bar{a} = \sum_{i=1}^{n} a_{i}/n.$$

$$\begin{split} & \left[\vec{p}_{u}^{*} \geq \frac{\mathbb{E}[\mathbf{a}]}{2} \left[1 + \frac{c}{n} \mathbf{1}^{\top} \left[2\Gamma + (2\mathbb{E}[b] + c)I - \Gamma W \right]^{-1} \mathbf{1} \right], \\ & \mathbb{E}[\vec{s}_{i}] \geq \frac{\mathbb{E}[\mathbf{a}] - \vec{p}_{u, \text{LB}}^{*}}{n} \cdot \mathbf{1}^{\top} \left(2\Gamma + 2\mathbb{E}[b]I - \Gamma W \right)^{-1} \mathbf{1}. \end{split} \right] \end{split}$$

Perfect Price Discrimination

$$\mathbf{p}^* = \frac{\mathbf{a}}{2} + CZ \frac{\mathbf{a}}{2} - W^{\top} \Gamma Z \frac{\mathbf{a}}{4} + \Gamma WZ \frac{\mathbf{a}}{4},$$

$$\mathbf{x}^* = \left(C + B + 2\Gamma - \frac{W^{\top} \Gamma}{2} - \frac{\Gamma W}{2}\right)^{-1} \frac{\mathbf{a}}{2},$$

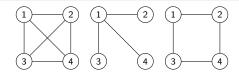
$$Z = \left[2\Gamma + B + C - \left(\frac{W^{\top} \Gamma}{2} + \frac{\Gamma W}{2}\right)\right]^{-1}.$$

$$p_{u}^{*} = \left[1 - \frac{\mathbf{1}^{\top} A^{-1} \mathbf{1}}{2 \cdot \mathbf{1}^{\top} (A^{-1} + A^{-1} C A^{-1}) \mathbf{1}}\right] \bar{a},$$

$$\mathbf{x}^{*} = A^{-1} \left[\mathbf{a} - \left(1 - \frac{\mathbf{1}^{\top} A^{-1} \mathbf{1}}{2 \cdot \mathbf{1}^{\top} (A^{-1} + A^{-1} C A^{-1}) \mathbf{1}}\right) \bar{a} \mathbf{1}\right],$$

$$A = B + 2\Gamma - \Gamma W, \qquad \bar{a} = \sum_{i=1}^{n} a_{i}/n.$$

$$\begin{split} & \left[\vec{p}_{u}^{*} \geq \frac{\mathbb{E}[\vec{a}]}{2} \left[1 + \frac{c}{n} \mathbf{1}^{\top} \left[2\Gamma + (2\mathbb{E}[b] + c)I - \Gamma W \right]^{-1} \mathbf{1} \right], \\ & \mathbb{E}[\vec{x}_{l}] \geq \frac{\mathbb{E}[\vec{a}] - \vec{p}_{u, \text{LB}}^{*}}{n} \cdot \mathbf{1}^{\top} \left(2\Gamma + 2\mathbb{E}[b]I - \Gamma W \right)^{-1} \mathbf{1}. \end{split} \right] \end{split}$$



Perfect Price Discrimination

$$\mathbf{p}^* = \frac{\mathbf{a}}{2} + CZ \frac{\mathbf{a}}{2} - W^{\top} \Gamma Z \frac{\mathbf{a}}{4} + \Gamma WZ \frac{\mathbf{a}}{4},$$

$$\mathbf{x}^* = \left(C + B + 2\Gamma - \frac{W^{\top} \Gamma}{2} - \frac{\Gamma W}{2}\right)^{-1} \frac{\mathbf{a}}{2},$$

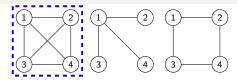
$$Z = \left[2\Gamma + B + C - \left(\frac{W^{\top} \Gamma}{2} + \frac{\Gamma W}{2}\right)\right]^{-1}.$$

$$p_{u}^{*} = \left[1 - \frac{\mathbf{1}^{\top} A^{-1} \mathbf{1}}{2 \cdot \mathbf{1}^{\top} (A^{-1} + A^{-1} C A^{-1}) \mathbf{1}}\right] \bar{a},$$

$$\mathbf{x}^{*} = A^{-1} \left[\mathbf{a} - \left(1 - \frac{\mathbf{1}^{\top} A^{-1} \mathbf{1}}{2 \cdot \mathbf{1}^{\top} (A^{-1} + A^{-1} C A^{-1}) \mathbf{1}}\right) \bar{a} \mathbf{1}\right],$$

$$A = B + 2\Gamma - \Gamma W, \qquad \bar{a} = \sum_{i=1}^{n} a_{i}/n.$$

$$\begin{split} & \left[\vec{p}_{u}^{*} \geq \frac{\mathbb{E}[\mathbf{a}]}{2} \left[1 + \frac{c}{n} \mathbf{1}^{\top} \left[2\Gamma + (2\mathbb{E}[b] + c)I - \Gamma W \right]^{-1} \mathbf{1} \right], \\ & \mathbb{E}[\vec{x}_{l}] \geq \frac{\mathbb{E}[\mathbf{a}] - \vec{p}_{u, \text{LB}}^{*}}{n} \cdot \mathbf{1}^{\top} \left(2\Gamma + 2\mathbb{E}[b]I - \Gamma W \right)^{-1} \mathbf{1}. \end{split} \right] \end{split}$$



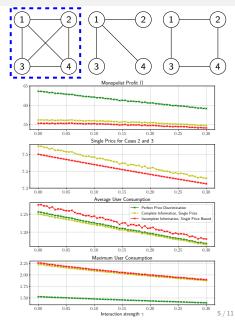
Perfect Price Discrimination

$$\mathbf{p}^* = \frac{\mathbf{a}}{2} + CZ\frac{\mathbf{a}}{2} - W^{\top}\Gamma Z\frac{\mathbf{a}}{4} + \Gamma WZ\frac{\mathbf{a}}{4},$$

$$\mathbf{x}^* = \left(C + B + 2\Gamma - \frac{W^{\top}\Gamma}{2} - \frac{\Gamma W}{2}\right)^{-1}\frac{\mathbf{a}}{2},$$

$$Z = \left[2\Gamma + B + C - \left(\frac{W^{\top}\Gamma}{2} + \frac{\Gamma W}{2}\right)\right]^{-1}$$

$$\begin{split} & \frac{\mathsf{Single Price, Incomplete Information}}{\tilde{\rho}_u^* \geq \frac{\mathbb{E}[a]}{2} \left[1 + \frac{c}{n} \mathbf{1}^\top \left[2\Gamma + (2\mathbb{E}[b] + c)I - \Gamma W \right]^{-1} \mathbf{1} \right],} \\ & \mathbb{E}[\tilde{s}_I] \geq \frac{\mathbb{E}[a] - \tilde{\rho}_{u, \text{LB}}^*}{n} \cdot \mathbf{1}^\top \left(2\Gamma + 2\mathbb{E}[b]I - \Gamma W \right)^{-1} \mathbf{1}. \end{split}$$



Theorem (Monotonicity of Consumption Equilibrium)

If $a_i = a$, $b_i = b$, and $\gamma_i = \gamma \forall i \in I$, then x_i^* is strictly monotonically decreasing in γ independent of the network topology W.

Proof Sketch.

Take derivative $\frac{dx}{d\gamma} = -\frac{1}{4\gamma(b+\gamma)}K^{-1}F^{-1}(\mathbf{a} - \mathbf{p})$ and exploit diagonal dominance of K and F. Show that all elements $(K^{-1}F^{-1})_{ij}$ are positive.

Theorem (Influence of High Consumer)

Let $w_{ij} = \left(\sum_{j \in \mathcal{I}} \mathbf{1}_{w_{ij} > 0}\right)^{-1}$, $b_i = b$, $\gamma_i = \gamma$ and $a_i - p_i = \alpha$ for $\mathcal{N} = \{i \in \mathcal{I} \setminus j\}$. Let j be the "high" consumer. If $a_j - p_j = \tilde{\alpha} > n\alpha$, then for each neighbor i of j, x_i^* is initially increasing in γ , whereas x_j^* is strictly monotonically decreasing in γ .

Proof Sketch.

Evaluate $rac{d\mathbf{x}}{d\gamma}$ at $\gamma=$ 0 and use definition of peer effects.

Theorem (Monotonicity of Consumption Equilibrium)

If $a_i = a$, $b_i = b$, and $\gamma_i = \gamma \forall i \in \mathcal{I}$, then x_i^* is strictly monotonically decreasing in γ independent of the network topology W.

Proof Sketch.

Take derivative $\frac{d\mathbf{x}}{d\gamma} = -\frac{1}{4\gamma(b+\gamma)}K^{-1}F^{-1}(\mathbf{a}-\mathbf{p})$ and exploit diagonal dominance of K and F. Show that all elements $(K^{-1}F^{-1})_{ij}$ are positive.

Theorem (Influence of High Consumer)

Let $w_{ij} = \left(\sum_{j \in \mathcal{I}} \mathbf{1}_{w_{ij} > 0}\right)^{-1}$, $b_i = b$, $\gamma_i = \gamma$ and $a_i - p_i = \alpha$ for $\mathcal{N} = \{i \in \mathcal{I} \setminus j\}$. Let j be the "high" consumer. If $a_j - p_j = \overline{\alpha} > n\alpha$, then for each neighbor i of j, x_i^* is initially increasing in γ , whereas x_i^* is strictly monotonically decreasing in γ .

Proof Sketch.

Evaluate $rac{d\mathbf{x}}{d\gamma}$ at $\gamma=$ 0 and use definition of peer effects.

Theorem (Monotonicity of Consumption Equilibrium)

If $a_i = a$, $b_i = b$, and $\gamma_i = \gamma \forall i \in \mathcal{I}$, then x_i^* is strictly monotonically decreasing in γ independent of the network topology W.

Proof Sketch.

Take derivative $\frac{d\mathbf{x}}{d\gamma} = -\frac{1}{4\gamma(b+\gamma)}K^{-1}F^{-1}(\mathbf{a}-\mathbf{p})$ and exploit diagonal dominance of K and F. Show that all elements $(K^{-1}F^{-1})_{ij}$ are positive.

Theorem (Influence of High Consumer)

Let $w_{ij} = \left(\sum_{j \in \mathcal{I}} \mathbf{1}_{w_{ij} > 0}\right)^{-1}$, $b_i = b$, $\gamma_i = \gamma$ and $a_i - p_i = \alpha$ for $\mathcal{N} = \{i \in \mathcal{I} \setminus j\}$. Let j be the "high" consumer. If $a_j - p_j = \overline{\alpha} > n\alpha$, then for each neighbor i of j, x_i^* is initially increasing in γ , whereas x_i^* is strictly monotonically decreasing in γ .

Proof Sketch.

Evaluate $\frac{d\mathbf{x}}{d\gamma}$ at $\gamma = 0$ and use definition of peer effects.

Theorem (Monotonicity of Consumption Equilibrium)

If $a_i = a$, $b_i = b$, and $\gamma_i = \gamma \forall i \in \mathcal{I}$, then x_i^* is strictly monotonically decreasing in γ independent of the network topology W.

Proof Sketch.

Take derivative $\frac{d\mathbf{x}}{d\gamma} = -\frac{1}{4\gamma(b+\gamma)}K^{-1}F^{-1}(\mathbf{a}-\mathbf{p})$ and exploit diagonal dominance of K and F. Show that all elements $(K^{-1}F^{-1})_{ij}$ are positive.

Theorem (Influence of High Consumer)

Let $w_{ij} = \left(\sum_{j \in \mathcal{I}} \mathbf{1}_{w_{ij} > 0}\right)^{-1}$, $b_i = b$, $\gamma_i = \gamma$ and $a_i - p_i = \alpha$ for $\mathcal{N} = \{i \in \mathcal{I} \setminus j\}$. Let j be the "high" consumer. If $a_j - p_j = \overline{\alpha} > n\alpha$, then for each neighbor i of j, x_i^* is initially increasing in γ , whereas x_i^* is strictly monotonically decreasing in γ .

Proof Sketch.

Evaluate $\frac{d\mathbf{x}}{d\gamma}$ at $\gamma = 0$ and use definition of peer effects.

Theoretical Statements (cont'd.)

Theorem (Targeted Peer Effects)

For n = 2 users, the network effect reduces the sum of their consumptions iff

$$b_1 \leq rac{\left(a_1-p
ight)\left(4b_2+3\gamma
ight)}{2\left(a_2-p
ight)} \hspace{0.3cm} ext{and} \hspace{0.3cm} b_2 \leq rac{\left(a_2-p
ight)\left(4b_1+3\gamma
ight)}{2\left(a_1-p
ight)}$$

This can be generalized to $n \ge 3$.

Proof Sketch.

Utility maximizing response of user
$$i$$
 is $x_i^*=rac{a_i-p_i+\gamma_i\sum_{j\in\mathcal{I}}w_{ij}x_j}{2(b_i+\gamma_i)}.$ Result follows

Theorem (Efficiency)

The consumption equilibrium \mathbf{x}^* is inefficient as the social welfare S attained is suboptimal. Specifically, $x_i^* < x_i^\circ \forall i \in \mathcal{I}$, where \mathbf{x}° maximizes social welfare:

$$\mathbf{x}^{\circ} = \left(C + \frac{B}{2} + \Gamma - \frac{W^{\top}\Gamma}{2} - \frac{\Gamma W}{2}\right)^{-1} \frac{\mathbf{a}}{2}$$

Allocating users per-unit subsidies $s_i = (b_i + \gamma_i)x_i^2/2$ can restore the social optimum.

Theoretical Statements (cont'd.)

Theorem (Targeted Peer Effects)

For n = 2 users, the network effect reduces the sum of their consumptions iff

$$b_1 \leq rac{\left(a_1 - p
ight) \left(4b_2 + 3\gamma
ight)}{2(a_2 - p)} \quad and \quad b_2 \leq rac{\left(a_2 - p
ight) \left(4b_1 + 3\gamma
ight)}{2(a_1 - p)}$$

This can be generalized to $n \ge 3$.

Proof Sketch.

Utility maximizing response of user *i* is
$$x_i^* = \frac{a_i - p_i + \gamma_i \sum_{j \in \mathcal{I}} w_{ij} x_j}{2(b_i + \gamma_i)}$$
. Result follows

Theorem (Efficiency)

The consumption equilibrium \mathbf{x}^* is inefficient as the social welfare S attained is suboptimal. Specifically, $\mathbf{x}_i^* < \mathbf{x}_i^\circ \ \forall \ i \in \mathcal{I}$, where \mathbf{x}° maximizes social welfare:

$$\mathbf{x}^{\circ} = \left(C + \frac{B}{2} + \Gamma - \frac{W^{\top}\Gamma}{2} - \frac{\Gamma W}{2}\right)^{-1} \frac{\mathbf{a}}{2}$$

Allocating users per-unit subsidies $s_i = (b_i + \gamma_i)x_i^2/2$ can restore the social optimum.

Theoretical Statements (cont'd.)

Theorem (Targeted Peer Effects)

For n = 2 users, the network effect reduces the sum of their consumptions iff

$$b_1 \leq rac{\left(a_1 - p
ight) \left(4b_2 + 3\gamma
ight)}{2(a_2 - p)} \quad and \quad b_2 \leq rac{\left(a_2 - p
ight) \left(4b_1 + 3\gamma
ight)}{2(a_1 - p)}$$

This can be generalized to $n \ge 3$.

Proof Sketch.

Utility maximizing response of user *i* is
$$x_i^* = \frac{a_i - p_i + \gamma_i \sum_{j \in \mathcal{I}} w_{ij} x_j}{2(b_i + \gamma_i)}$$
. Result follows.

Theorem (Efficiency)

The consumption equilibrium \mathbf{x}^* is inefficient as the social welfare S attained is suboptimal. Specifically, $x_i^* < x_i^\circ \forall i \in \mathcal{I}$, where \mathbf{x}° maximizes social welfare:

$$\mathbf{x}^{\circ} = \left(C + \frac{B}{2} + \Gamma - \frac{W^{\top}\Gamma}{2} - \frac{\Gamma W}{2}\right)^{-1} \frac{\mathbf{a}}{2}$$

Allocating users per-unit subsidies $s_i = (b_i + \gamma_i)x_i^2/2$ can restore the social optimum.

Network Uncertainty

Unknown Network Structure

- Let $W = W^{\top}$ and $\Gamma = \gamma I$
- Monopolist only has estimate $\tilde{W},$ where $\tilde{W}=\tilde{W}^\top$
- Lower bound on expected profit Π^{*} under perfect price discrimination:

$$\frac{\tilde{\Pi}^*}{\Pi^*} \geq \frac{\lambda_{\min}(C + B + 2\Gamma - \Gamma W)}{\lambda_{\max}(C + B + 2\Gamma - \Gamma W) + \gamma \|W - \tilde{W}\|_2}$$

• Simulation for n = 24 fully connected users:

Network Uncertainty

Unknown Network Structure

- Let $W = W^{\top}$ and $\Gamma = \gamma I$
- Monopolist only has estimate $\tilde{W},$ where $\tilde{W}=\tilde{W}^\top$
- \bullet Lower bound on expected profit $\tilde{\Pi}^*$ under perfect price discrimination:

$$\frac{\tilde{\Pi}^*}{\Pi^*} \geq \frac{\lambda_{\min}(C + B + 2\Gamma - \Gamma W)}{\lambda_{\max}(C + B + 2\Gamma - \Gamma W) + \gamma \|W - \tilde{W}\|_2}$$

• Simulation for n = 24 fully connected users:

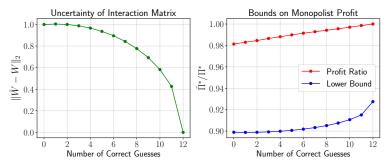
Network Uncertainty

Unknown Network Structure

- Let $W = W^{\top}$ and $\Gamma = \gamma I$
- Monopolist only has estimate $\tilde{W},$ where $\tilde{W}=\tilde{W}^\top$
- \bullet Lower bound on expected profit $\tilde{\Pi}^*$ under perfect price discrimination:

$$\frac{\tilde{\mathsf{\Pi}}^*}{\mathsf{\Pi}^*} \geq \frac{\lambda_{\min}(\mathsf{C} + \mathsf{B} + 2\mathsf{\Gamma} - \mathsf{\Gamma}\mathsf{W})}{\lambda_{\max}(\mathsf{C} + \mathsf{B} + 2\mathsf{\Gamma} - \mathsf{\Gamma}\mathsf{W}) + \gamma \|\mathsf{W} - \tilde{\mathsf{W}}\|_2}$$

• Simulation for n = 24 fully connected users:



- Which users should be exposed to peer effects to maximize profit?
- Assume *p* is exogenously set (by the Public Utilities Commission)
- Formulate profit-maximizing problem:

$$\begin{array}{ll} \underset{\delta_{1},\ldots,\delta_{n}}{\operatorname{maximize}} & \sum_{i=1}^{n} px_{i} - c_{i}x_{i}^{2} \\ \text{subject to} & \mathbf{x} = (B + 2\Delta\Gamma - \Delta\Gamma W)^{-1} \left(\mathbf{a} - \rho \mathbf{1}\right) \\ & \sum_{i=1}^{n} \delta_{i} = m, \quad \delta_{i} \in \{0,1\} \\ & \Delta = \operatorname{diag}(\delta_{1},\ldots,\delta_{n}) \end{array}$$

- MIQCP cannot be solved analytically
- Use heuristic for targeting: Only expose highest and lowest consumers to effects

- Which users should be exposed to peer effects to maximize profit?
- Assume *p* is exogenously set (by the Public Utilities Commission)
- Formulate profit-maximizing problem:

$$\begin{array}{ll} \underset{\delta_{1},\ldots,\delta_{n}}{\text{maximize}} & \sum_{i=1}^{n} px_{i} - c_{i}x_{i}^{2} \\ \text{subject to} & \mathbf{x} = (B + 2\Delta\Gamma - \Delta\Gamma W)^{-1} \left(\mathbf{a} - \rho \mathbf{1}\right) \\ & \sum_{i=1}^{n} \delta_{i} = m, \quad \delta_{i} \in \{0,1\} \\ & \Delta = \text{diag}(\delta_{1},\ldots,\delta_{n}) \end{array}$$

- MIQCP cannot be solved analytically
- Use heuristic for targeting: Only expose highest and lowest consumers to effects

- Which users should be exposed to peer effects to maximize profit?
- Assume *p* is exogenously set (by the Public Utilities Commission)
- Formulate profit-maximizing problem:

$$\begin{array}{ll} \underset{\delta_{1},\ldots,\delta_{n}}{\text{maximize}} & \sum_{i=1}^{n} px_{i} - c_{i}x_{i}^{2} \\ \text{subject to} & \mathbf{x} = (B + 2\Delta\Gamma - \Delta\Gamma W)^{-1} \left(\mathbf{a} - \rho\mathbf{1}\right) \\ & \sum_{i=1}^{n} \delta_{i} = m, \quad \delta_{i} \in \{0,1\} \\ & \Delta = \text{diag}(\delta_{1},\ldots,\delta_{n}) \end{array}$$

- MIQCP cannot be solved analytically
- Use heuristic for targeting: Only expose highest and lowest consumers to effects

- Which users should be exposed to peer effects to maximize profit?
- Assume *p* is exogenously set (by the Public Utilities Commission)
- Formulate profit-maximizing problem:

$$\begin{array}{ll} \underset{\delta_{1},\ldots,\delta_{n}}{\operatorname{maximize}} & \sum_{i=1}^{n} px_{i} - c_{i}x_{i}^{2} \\ \text{subject to} & \mathbf{x} = (B + 2\Delta\Gamma - \Delta\Gamma W)^{-1} \left(\mathbf{a} - p\mathbf{1}\right) \\ & \sum_{i=1}^{n} \delta_{i} = m, \quad \delta_{i} \in \{0,1\} \\ & \Delta = \operatorname{diag}(\delta_{1},\ldots,\delta_{n}) \end{array}$$

- MIQCP cannot be solved analytically
- Use heuristic for targeting: Only expose highest and lowest consumers to effects

- Which users should be exposed to peer effects to maximize profit?
- Assume *p* is exogenously set (by the Public Utilities Commission)
- Formulate profit-maximizing problem:

$$\begin{array}{ll} \underset{\delta_{1},\ldots,\delta_{n}}{\text{maximize}} & \sum_{i=1}^{n} px_{i} - c_{i}x_{i}^{2} \\ \text{subject to} & \mathbf{x} = (B + 2\Delta\Gamma - \Delta\Gamma W)^{-1} \left(\mathbf{a} - p\mathbf{1}\right) \\ & \sum_{i=1}^{n} \delta_{i} = m, \quad \delta_{i} \in \{0,1\} \\ & \Delta = \text{diag}(\delta_{1},\ldots,\delta_{n}) \end{array}$$

- MIQCP cannot be solved analytically
- Use heuristic for targeting: Only expose highest and lowest consumers to effects

m

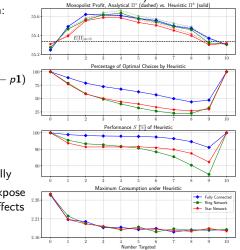
su

δ

- Which users should be exposed to peer effects to maximize profit?
- Assume p is exogenously set (by the Public Utilities Commission)
- Formulate profit-maximizing problem:

$$\begin{array}{ll} \underset{1,\dots,\delta_{n}}{\operatorname{aximize}} & \sum_{i=1}^{n} px_{i} - c_{i}x_{i}^{2} \\ \text{bject to} & \mathbf{x} = (B + 2\Delta\Gamma - \Delta\Gamma W)^{-1} \left(\mathbf{a} - \sum_{i=1}^{n} \delta_{i} = m, \quad \delta_{i} \in \{0,1\} \\ & \Delta = \operatorname{diag}(\delta_{1},\dots,\delta_{n}) \end{array}$$

- MIQCP cannot be solved analytically
- Use heuristic for targeting: Only expose highest and lowest consumers to effects



Summary

- Setup of two-stage game-theoretic model for a network of electricity consumers
- Consumers seek to maximize individual utility function and derive utility from peer comparisons
- Investigated profit-maximizing pricing schemes (subgame-perfect equilibria)
- Heuristic approach for profit maximization problem of utility

- Extend setting to sequential problem
- Incorporate fluctuating wholesale electricity prices
- Model peer effects in auction settings (incentive compabitility, ...)

Summary

- Setup of two-stage game-theoretic model for a network of electricity consumers
- Consumers seek to maximize individual utility function and derive utility from peer comparisons
- Investigated profit-maximizing pricing schemes (subgame-perfect equilibria)
- Heuristic approach for profit maximization problem of utility

- Extend setting to sequential problem
- Incorporate fluctuating wholesale electricity prices
- Model peer effects in auction settings (incentive compabitility, ...)

Summary

- Setup of two-stage game-theoretic model for a network of electricity consumers
- Consumers seek to maximize individual utility function and derive utility from peer comparisons
- Investigated profit-maximizing pricing schemes (subgame-perfect equilibria)
- Heuristic approach for profit maximization problem of utility

- Extend setting to sequential problem
- Incorporate fluctuating wholesale electricity prices
- Model peer effects in auction settings (incentive compabitility, ...)

Summary

- Setup of two-stage game-theoretic model for a network of electricity consumers
- Consumers seek to maximize individual utility function and derive utility from peer comparisons
- Investigated profit-maximizing pricing schemes (subgame-perfect equilibria)
- Heuristic approach for profit maximization problem of utility

- Extend setting to sequential problem
- Incorporate fluctuating wholesale electricity prices
- Model peer effects in auction settings (incentive compabitility, ...)

Summary

- Setup of two-stage game-theoretic model for a network of electricity consumers
- Consumers seek to maximize individual utility function and derive utility from peer comparisons
- Investigated profit-maximizing pricing schemes (subgame-perfect equilibria)
- Heuristic approach for profit maximization problem of utility

- Extend setting to sequential problem
- Incorporate fluctuating wholesale electricity prices
- Model peer effects in auction settings (incentive compabitility, ...)

Summary

- Setup of two-stage game-theoretic model for a network of electricity consumers
- Consumers seek to maximize individual utility function and derive utility from peer comparisons
- Investigated profit-maximizing pricing schemes (subgame-perfect equilibria)
- Heuristic approach for profit maximization problem of utility

- Extend setting to sequential problem
- Incorporate fluctuating wholesale electricity prices
- Model peer effects in auction settings (incentive compabitility, ...)

Summary

- Setup of two-stage game-theoretic model for a network of electricity consumers
- Consumers seek to maximize individual utility function and derive utility from peer comparisons
- Investigated profit-maximizing pricing schemes (subgame-perfect equilibria)
- Heuristic approach for profit maximization problem of utility

- Extend setting to sequential problem
- Incorporate fluctuating wholesale electricity prices
- Model peer effects in auction settings (incentive compabitility, ...)

THANK YOU! QUESTIONS?