Eliciting Private User Information for Residential Demand Response

D.P. Zhou, M. Balandat, M.A. Dahleh, and C.J. Tomlin

[datong.zhou, balandat, tomlin]@berkeley.edu, dahleh@mit.edu

December 12, 2017

(Residential) Demand Response

DR Provider seeks to collect "reductions" of electricity consumption from its customers under contract in exchange for monetary incentives

(Residential) Demand Response

DR Provider seeks to collect "reductions" of electricity consumption from its customers under contract in exchange for monetary incentives

Challenges

- **How can reduction be measured?**
- How heterogeneous are users in their reduction behavior?
- **•** Can users "game" the system by misreporting their preferences?

End Users

- \bullet Each user $i \in \mathcal{I}$ has estimated baseline consumption $\hat{x}_i \in \mathbb{R}_+$ and actual, materialized consumption $x_i \in \mathbb{R}_+$
- \bullet Estimated reduction is $\delta_i = (\hat{x}_i x_i) \mathbf{1}_{i \in \mathcal{T}}$
- \bullet Demand curve / price elasticity of demand: $x_i(r_i) = \bar{x}_i \exp(-\alpha_i r_i)$
- \bullet User i's utility function: $u_i = (r_i[\hat{x}_i x_i]_+ q_i[x_i \hat{x}_i]_+) \mathbf{1}_{i \in \mathcal{T}}$

$$
\begin{aligned}\n\underset{r_1,\ldots,r_n}{\text{minimize}} & \mathbb{E}_{\delta_1,\ldots,\delta_n} \left[\sum\nolimits_{i \in \mathcal{I}} \delta_i \left(r_i \mathbf{1}_{\delta_i < 0} - q_i \mathbf{1}_{\delta_i \ge 0} \right) \right] \\
\text{subject to} & \mathbb{E}_{\delta_1,\ldots,\delta_n} \left[\sum\nolimits_{i \in \mathcal{I}} \delta_i \right] \ge M.\n\end{aligned}
$$

- \bullet Incentivize subset of end-users $\mathcal{T} \subset \mathcal{I}$ with user-specific, per-unit rewards
- Charge user i per-unit penalty $q_i \in \mathbb{R}_+$ for increasing consumption
- Collect $M \in \mathbb{R}_+$ units of aggregate reduction while minimizing payment to users:

End Users

- **•** Each user $i \in \mathcal{I}$ has estimated baseline consumption $\hat{x}_i \in \mathbb{R}_+$ and actual, materialized consumption $x_i \in \mathbb{R}_+$
- **•** Estimated reduction is $\delta_i = (\hat{x}_i x_i) \mathbf{1}_{i \in \mathcal{T}}$
- \bullet Demand curve / price elasticity of demand: $x_i(r_i) = \bar{x}_i \exp(-\alpha_i r_i)$
- User i's utility function: $u_i = (r_i[\hat{x}_i x_i]_+ q_i[x_i \hat{x}_i]_+) \mathbf{1}_{i \in \mathcal{T}}$

$$
\begin{aligned}\n&\text{minimize} & \mathbb{E}_{\delta_1,\ldots,\delta_n} \left[\sum_{i \in \mathcal{I}} \delta_i \left(r_i \mathbf{1}_{\delta_i < 0} - q_i \mathbf{1}_{\delta_i \ge 0} \right) \right] \\
&\text{subject to} & \mathbb{E}_{\delta_1,\ldots,\delta_n} \left[\sum_{i \in \mathcal{I}} \delta_i \right] \ge M.\n\end{aligned}
$$

- \bullet Incentivize subset of end-users $\mathcal{T} \subset \mathcal{I}$ with user-specific, per-unit rewards
- Charge user i per-unit penalty $q_i \in \mathbb{R}_+$ for increasing consumption
- Collect $M \in \mathbb{R}_+$ units of aggregate reduction while minimizing payment to users:

End Users

- **•** Each user $i \in \mathcal{I}$ has estimated baseline consumption $\hat{x}_i \in \mathbb{R}_+$ and actual, materialized consumption $x_i \in \mathbb{R}_+$
- **•** Estimated reduction is $\delta_i = (\hat{x}_i x_i) \mathbf{1}_{i \in \mathcal{T}}$
- **•** Demand curve / price elasticity of demand: $x_i(r_i) = \bar{x}_i \exp(-\alpha_i r_i)$
- User *i*'s utility function: $u_i = (r_i[\hat{x}_i x_i]_+ q_i[x_i \hat{x}_i]_+) \mathbf{1}_{i \in \mathcal{T}}$

$$
\begin{aligned}\n\min_{r_1,\ldots,r_n} & \text{if } \mathbb{E}_{\delta_1,\ldots,\delta_n} \left[\sum_{i \in \mathcal{I}} \delta_i \left(r_i \mathbf{1}_{\delta_i < 0} - q_i \mathbf{1}_{\delta_i \ge 0} \right) \right] \\
\text{subject to } & \mathbb{E}_{\delta_1,\ldots,\delta_n} \left[\sum_{i \in \mathcal{I}} \delta_i \right] \ge M.\n\end{aligned}
$$

- \bullet Incentivize subset of end-users $\mathcal{T} \subset \mathcal{I}$ with user-specific, per-unit rewards
- Charge user *i* per-unit penalty $q_i \in \mathbb{R}_+$ for *increasing* consumption
- Collect $M \in \mathbb{R}_+$ units of aggregate reduction while minimizing payment to users:

End Users

- **•** Each user $i \in \mathcal{I}$ has estimated baseline consumption $\hat{x}_i \in \mathbb{R}_+$ and actual, materialized consumption $x_i \in \mathbb{R}_+$
- **•** Estimated reduction is $\delta_i = (\hat{x}_i x_i) \mathbf{1}_{i \in \mathcal{T}}$
- **•** Demand curve / price elasticity of demand: $x_i(r_i) = \bar{x}_i \exp(-\alpha_i r_i)$
- User *i*'s utility function: $u_i = (r_i[\hat{x}_i x_i]_+ q_i[x_i \hat{x}_i]_+) \mathbf{1}_{i \in \mathcal{T}}$

$$
\begin{aligned}\n&\text{minimize} & \mathbb{E}_{\delta_1,\ldots,\delta_n} \left[\sum_{i \in \mathcal{I}} \delta_i \left(r_i \mathbf{1}_{\delta_i < 0} - q_i \mathbf{1}_{\delta_i \ge 0} \right) \right] \\
&\text{subject to} & \mathbb{E}_{\delta_1,\ldots,\delta_n} \left[\sum_{i \in \mathcal{I}} \delta_i \right] \ge M.\n\end{aligned}
$$

- \bullet Incentivize subset of end-users $\mathcal{T} \subset \mathcal{I}$ with user-specific, per-unit rewards
- Charge user *i* per-unit penalty $q_i \in \mathbb{R}_+$ for *increasing* consumption
- Collect $M \in \mathbb{R}_+$ units of aggregate reduction while minimizing payment to users:

End Users

- \bullet Each user $i \in \mathcal{I}$ has estimated baseline consumption $\hat{x}_i \in \mathbb{R}_+$ and actual, materialized consumption $x_i \in \mathbb{R}_+$
- **•** Estimated reduction is $\delta_i = (\hat{x}_i x_i) \mathbf{1}_{i \in \mathcal{T}}$
- **•** Demand curve / price elasticity of demand: $x_i(r_i) = \bar{x}_i \exp(-\alpha_i r_i)$
- User i's utility function: $u_i = (r_i[\hat{x}_i x_i]_+ q_i[x_i \hat{x}_i]_+) \mathbf{1}_{i \in \mathcal{T}}$

$$
\begin{aligned}\n&\text{minimize} & \mathbb{E}_{\delta_1,\ldots,\delta_n} \left[\sum_{i \in \mathcal{I}} \delta_i \left(r_i \mathbf{1}_{\delta_i < 0} - q_i \mathbf{1}_{\delta_i \ge 0} \right) \right] \\
&\text{subject to} & \mathbb{E}_{\delta_1,\ldots,\delta_n} \left[\sum_{i \in \mathcal{I}} \delta_i \right] \ge M.\n\end{aligned}
$$

- \bullet Incentivize subset of end-users $\mathcal{T} \subset \mathcal{I}$ with user-specific, per-unit rewards ${r_i \in \mathbb{R}_+ \mid i \in \mathcal{T}}$
- Charge user *i* per-unit penalty $q_i \in \mathbb{R}_+$ for *increasing* consumption
- Collect $M \in \mathbb{R}_+$ units of aggregate reduction while minimizing payment to users:

End Users

- \bullet Each user $i \in \mathcal{I}$ has estimated baseline consumption $\hat{x}_i \in \mathbb{R}_+$ and actual, materialized consumption $x_i \in \mathbb{R}_+$
- **•** Estimated reduction is $\delta_i = (\hat{x}_i x_i) \mathbf{1}_{i \in \mathcal{T}}$
- **•** Demand curve / price elasticity of demand: $x_i(r_i) = \bar{x}_i \exp(-\alpha_i r_i)$
- User *i*'s utility function: $u_i = (r_i[\hat{x}_i x_i]_+ q_i[x_i \hat{x}_i]_+) \mathbf{1}_{i \in \mathcal{T}}$

$$
\begin{aligned}\n&\text{minimize} & \mathbb{E}_{\delta_1,\ldots,\delta_n} \left[\sum_{i \in \mathcal{I}} \delta_i \left(r_i \mathbf{1}_{\delta_i < 0} - q_i \mathbf{1}_{\delta_i \ge 0} \right) \right] \\
&\text{subject to} & \mathbb{E}_{\delta_1,\ldots,\delta_n} \left[\sum_{i \in \mathcal{I}} \delta_i \right] \ge M.\n\end{aligned}
$$

- \bullet Incentivize subset of end-users $\mathcal{T} \subset \mathcal{I}$ with user-specific, per-unit rewards ${r_i \in \mathbb{R}_+ \mid i \in \mathcal{T}}$
- Charge user *i* per-unit penalty $q_i \in \mathbb{R}_+$ for *increasing* consumption
- Collect $M \in \mathbb{R}_+$ units of aggregate reduction while minimizing payment to users:

End Users

- \bullet Each user $i \in \mathcal{I}$ has estimated baseline consumption $\hat{x}_i \in \mathbb{R}_+$ and actual, materialized consumption $x_i \in \mathbb{R}_+$
- **•** Estimated reduction is $\delta_i = (\hat{x}_i x_i) \mathbf{1}_{i \in \mathcal{T}}$
- **•** Demand curve / price elasticity of demand: $x_i(r_i) = \bar{x}_i \exp(-\alpha_i r_i)$
- User i's utility function: $u_i = (r_i[\hat{x}_i x_i]_+ q_i[x_i \hat{x}_i]_+) \mathbf{1}_{i \in \mathcal{T}}$

minimize
$$
\mathbb{E}_{\delta_1,\dots,\delta_n} \left[\sum_{i \in \mathcal{I}} \delta_i (r_i \mathbf{1}_{\delta_i < 0} - q_i \mathbf{1}_{\delta_i \ge 0}) \right]
$$

subject to $\mathbb{E}_{\delta_1,\dots,\delta_n} \left[\sum_{i \in \mathcal{I}} \delta_i \right] \ge M$.

- Incentivize subset of end-users $T \subset \mathcal{I}$ with user-specific, per-unit rewards ${r_i \in \mathbb{R}_+ \mid i \in \mathcal{T}}$
- Charge user *i* per-unit penalty $q_i \in \mathbb{R}_+$ for *increasing* consumption
- Collect $M \in \mathbb{R}_+$ units of aggregate reduction while minimizing payment to users:

At $t = 0$:

 \bullet User i's type is $\theta_i = (\alpha_i \sim F_\alpha, \xi_i \sim F_\xi)$, where $\bar{x}_i \sim G_{\xi_i} \sim G_{\xi_i \sim F_\xi}$

• Elasticity α_i characterizes willingness to reduce

At $t = 1$:

• Individual Rationality: $\mathbb{E}[u_i(f(\theta_i, \mathbf{z}_{-i}))] \geq 0$ $\forall i \in \mathcal{I}, \mathbf{z} \in \Theta$

Incentive Compatibility: $\theta_i = \arg \max_{z_i \in \Theta_i} \mathbb{E}_{z_i} [u_i(f(z_i, z_{-i}), \theta_i)] \quad \forall i \in \mathcal{I}, \ z \in \Theta$

At $t = 2$:

• Social choice function $f(z)$ consists of allocation and payment rule

- **Settlements between DR Provider and users**
- **•** But: Not considered in Mechanism Design

At $t=0$:

- \bullet User *i*'s type is $\bm{\theta}_i = (\alpha_i \sim F_\alpha, \bm{\xi}_i \sim F_{\bm{\xi}})$, where $\bar{\bm{x}}_i \sim G_{\bm{\xi}_i} \sim G_{\bm{\xi}_i \sim F_{\bm{\xi}}}$
	- Elasticity α_i characterizes willingness to reduce
	- Base consumption \bar{x}_i is stochastic, does not follow rational profit-maximization

At $t = 1$:

- **•** Individual Rationality: $\mathbb{E}[u_i(f(\theta_i, \mathbf{z}_{-i}))] \geq 0$ $\forall i \in \mathcal{I}, \mathbf{z} \in \Theta$
- *Incentive Compatibility*: $\theta_i = \arg \max_{z_i \in \Theta_i} \mathbb{E}_{z_i} [u_i(f(z_i, z_{-i}), \theta_i)] \quad \forall i \in \mathcal{I}, \ z \in \Theta$

At $t = 2$:

• Social choice function $f(z)$ consists of allocation and payment rule

- **Settlements between DR Provider and users**
- **•** But: Not considered in Mechanism Design

At $t=0$:

- User *i's type is* $θ_i = (α_i ~ √ F_α, ξ_i ~ √ F_ε)$ *, where* $\bar{x}_i ~ ∼ G_ε_i ~ ∼ G_ε_i ~ ∘ F_ε$
	- Elasticity α_i characterizes willingness to reduce
	- Base consumption \bar{x}_i is stochastic, does not follow rational profit-maximization

At $t = 1$:

- **•** Individual Rationality: $\mathbb{E}[u_i(f(\theta_i, \mathbf{z}_{-i}))] \geq 0 \quad \forall i \in \mathcal{I}, \ \mathbf{z} \in \Theta$
- *Incentive Compatibility*: $\theta_i = \arg \max_{z_i \in \Theta_i} \mathbb{E}_{z_i} [u_i(f(z_i, z_{-i}), \theta_i)] \quad \forall i \in \mathcal{I}, \ z \in \Theta$

At $t = 2$:

• Social choice function $f(z)$ consists of allocation and payment rule

- **Settlements between DR Provider and users**
- **•** But: Not considered in Mechanism Design

Δt $t = 0$:

- User *i's type is* $θ_i = (α_i ~ √ F_α, ξ_i ~ √ F_ε)$ *, where* $\bar{x}_i ~ ∼ G_ε_i ~ ∼ G_ε_i ~ ∘ F_ε$
	- Elasticity α_i characterizes willingness to reduce
	- Base consumption \bar{x}_i is stochastic, does not follow rational profit-maximization

At $t = 1$:

- **•** Individual Rationality: $\mathbb{E}[u_i(f(\theta_i, \mathbf{z}_{-i}))] \geq 0 \quad \forall i \in \mathcal{I}, \mathbf{z} \in \Theta$
- *Incentive Compatibility*: $\theta_i = \arg \max_{z_i \in \Theta_i} \mathbb{E}_{z_i} [u_i(f(z_i, z_{-i}), \theta_i)] \quad \forall i \in \mathcal{I}, \ z \in \Theta$

At $t = 2$:

 \bullet Social choice function $f(z)$ consists of allocation and payment rule

- **Settlements between DR Provider and users**
- **•** But: Not considered in Mechanism Design

At $t=0$:

- User *i's type is* $θ_i = (α_i ~ √ F_α, ξ_i ~ √ F_ε)$ *, where* $\bar{x}_i ~ ∼ G_ε_i ~ ∼ G_ε_i ~ ∘ F_ε$
	- Elasticity α_i characterizes willingness to reduce
	- Base consumption \bar{x}_i is stochastic, does not follow rational profit-maximization

At $t = 1$:

- **•** Individual Rationality: $\mathbb{E}[u_i(f(\theta_i, \mathbf{z}_{-i}))] \geq 0 \quad \forall i \in \mathcal{I}, \mathbf{z} \in \Theta$
- *Incentive Compatibility*: $\theta_i = \arg \max_{z_i \in \Theta_i} \mathbb{E}_{z_i} [u_i(f(z_i, z_{-i}), \theta_i)] \quad \forall i \in \mathcal{I}, \ z \in \Theta$

At $t = 2$:

 \bullet Social choice function $f(z)$ consists of allocation and payment rule

- **•** Settlements between DR Provider and users
- **But: Not considered in Mechanism Design**

At $t=0$:

- User *i's type is* $θ_i = (α_i ~ √ F_α, ξ_i ~ √ F_ε)$ *, where* $\bar{x}_i ~ ∼ G_ε_i ~ ∼ G_ε_i ~ ∘ F_ε$
	- Elasticity α_i characterizes willingness to reduce
	- Base consumption \bar{x}_i is stochastic, does not follow rational profit-maximization

At $t = 1$:

- **•** Individual Rationality: $\mathbb{E}[u_i(f(\theta_i, \mathbf{z}_{-i}))] \geq 0 \quad \forall i \in \mathcal{I}, \mathbf{z} \in \Theta$
- *Incentive Compatibility*: $\theta_i = \arg \max_{z_i \in \Theta_i} \mathbb{E}_{z_i} [u_i(f(z_i, z_{-i}), \theta_i)] \quad \forall i \in \mathcal{I}, \ z \in \Theta$

At $t = 2$:

• Social choice function $f(z)$ consists of allocation and payment rule

Δ t $t - 3$.

- **•** Settlements between DR Provider and users
- **But: Not considered in Mechanism Design**

 \bullet User *i*'s type is $\theta_i = (\alpha_i \sim F_\alpha, \xi_i \sim F_\xi)$, where $\bar{x}_i \sim G_{\xi_i} \sim G_{\xi_i \sim F_\xi}$

- Elasticity α_i characterizes willingness to reduce
- Base consumption \bar{x}_i is stochastic, does not follow rational profit-maximization

Fit F and G from smart meter data in California

• User *i's* type is $θ_i = (α_i ~ √ F_α, ξ_i ~ √ F_ξ)$, where $\bar{x}_i ~ ∼ G_ξ_i ~ ∼ G_ξ_i ~ √ F_ξ$

- Elasticity α_i characterizes willingness to reduce
- Base consumption \bar{x}_i is stochastic, does not follow rational profit-maximization
- **Fit F and G from smart meter data in California**

Dominant Strategy Equilibrium (DSE)

$$
\boldsymbol{\theta}_i = \arg \max_{\mathbf{z}_i \in \Theta_i} \mathbb{E}_{\mathbf{z}_i} \left[u_i(f(\mathbf{z}_i, \mathbf{z}_{-i}), \boldsymbol{\theta}_i) \right] \quad \forall i \in \mathcal{I}, \ \mathbf{z} \in \Theta
$$

 \bullet Revelation Principle: Given a DSE, focus on *direct* mechanisms \to Users report their

Expected payoff (user's utility) must be larger than any outside option:

 $\mathbb{E}[u_i(f(\theta_i, z_{-i}))] \geq \mathbb{E}[(r_i[\hat{x}_i - x_i]_+ - q_i[x_i - \hat{x}_i]_+) \mathbf{1}_{i \notin \mathcal{T}}] = 0 \quad \forall i \in \mathcal{I}, \ z \in \Theta$

Dominant Strategy Equilibrium (DSE)

$$
\boldsymbol{\theta}_i = \arg \max_{\mathbf{z}_i \in \Theta_i} \mathbb{E}_{\mathbf{z}_i} \left[u_i(f(\mathbf{z}_i, \mathbf{z}_{-i}), \boldsymbol{\theta}_i) \right] \quad \forall i \in \mathcal{I}, \ \mathbf{z} \in \Theta
$$

• Revelation Principle: Given a DSE, focus on *direct* mechanisms \rightarrow Users report their type truthfully $z_i = \theta_i$

Expected payoff (user's utility) must be larger than any outside option:

 $\mathbb{E}[u_i(f(\theta_i, z_{-i}))] \geq \mathbb{E}[(r_i[\hat{x}_i - x_i]_+ - q_i[x_i - \hat{x}_i]_+) \mathbf{1}_{i \notin \mathcal{T}}] = 0 \quad \forall i \in \mathcal{I}, \ z \in \Theta$

Dominant Strategy Equilibrium (DSE)

$$
\boldsymbol{\theta}_i = \arg \max_{\mathbf{z}_i \in \Theta_i} \mathbb{E}_{\mathbf{z}_i} \left[u_i(f(\mathbf{z}_i, \mathbf{z}_{-i}), \boldsymbol{\theta}_i) \right] \quad \forall i \in \mathcal{I}, \ \mathbf{z} \in \Theta
$$

• Revelation Principle: Given a DSE, focus on *direct* mechanisms \rightarrow Users report their type truthfully $z_i = \theta_i$

Individual Rationality Constraints

Expected payoff (user's utility) must be larger than any outside option:

$$
\mathbb{E}[u_i(f(\theta_i, \mathsf{z}_{-i}))] \geq \underbrace{\mathbb{E}[(r_i[\hat{x}_i - x_i]_+ - q_i[x_i - \hat{x}_i]_+) \mathbf{1}_{i \notin \mathcal{T}}]}_{= \text{utility if not targeted}} = 0 \quad \forall i \in \mathcal{I}, \ \mathsf{z} \in \Theta
$$

Social Choice Function

- $f(\theta):\Theta\mapsto \mathcal Y$ maps type θ to collective choice $\mathsf y=(\mathsf d,\mathsf r)\in \mathcal Y=\{0,1\}^n\times \mathbb R_+^n$
	- Vector of allocation decisions $\mathbf{d} \in \{0,1\}^n$
	- Vector of rewards $\mathbf{r} \in \mathbb{R}_+^n$

VCG-Style Mechanism

$$
j_{\max} = \min_{j} \left\{ j \in \mathbb{N}_+ \middle| \sum_{i=1}^{j} \delta_i(\tilde{r}_j | \theta_i) \geq M \right\}
$$

$$
j(i) = \min_{k} \left\{ k \in \mathbb{N}_+ \middle| \sum_{s=1, s \neq i}^{k} \delta_s(\tilde{r}_k | \theta_s) \geq M \right\} \qquad \forall i \in \{1, ..., j_{\max}\} =: \mathcal{T}
$$

$$
r_i \leftarrow \tilde{r}_{j(i)} \geq \tilde{r}_i \quad \forall i \in \mathcal{T}
$$

Social Choice Function

- $f(\theta):\Theta\mapsto \mathcal Y$ maps type θ to collective choice $\mathsf y=(\mathsf d,\mathsf r)\in \mathcal Y=\{0,1\}^n\times \mathbb R_+^n$
	- Vector of allocation decisions $\mathbf{d} \in \{0,1\}^n$
	- Vector of rewards $\mathbf{r} \in \mathbb{R}_+^n$

VCG-Style Mechanism

$$
j_{\max} = \min_{j} \left\{ j \in \mathbb{N}_{+} \mid \sum_{i=1}^{J} \delta_{i}(\tilde{r}_{j} | \theta_{i}) \geq M \right\}
$$

$$
j(i) = \min_{k} \left\{ k \in \mathbb{N}_{+} \mid \sum_{s=1, s \neq i}^{k} \delta_{s}(\tilde{r}_{k} | \theta_{s}) \geq M \right\} \qquad \forall i \in \{1, ..., j_{\max}\} =: \mathcal{T}
$$

$$
r_{i} \leftarrow \tilde{r}_{j(i)} \geq \tilde{r}_{i} \quad \forall i \in \mathcal{T}
$$

Social Choice Function

- $f(\theta):\Theta\mapsto \mathcal Y$ maps type θ to collective choice $\mathsf y=(\mathsf d,\mathsf r)\in \mathcal Y=\{0,1\}^n\times \mathbb R_+^n$
	- Vector of allocation decisions $\mathbf{d} \in \{0,1\}^n$
	- Vector of rewards $\mathbf{r} \in \mathbb{R}_+^n$

VCG-Style Mechanism

$$
j_{\max} = \min_{j} \left\{ j \in \mathbb{N}_+ \middle| \sum_{i=1}^{j} \delta_i(\tilde{r}_j | \theta_i) \geq M \right\}
$$

$$
j(i) = \min_{k} \left\{ k \in \mathbb{N}_+ \middle| \sum_{s=1, s \neq i}^{k} \delta_s(\tilde{r}_k | \theta_s) \geq M \right\} \qquad \forall i \in \{1, ..., j_{\max}\} =: \mathcal{T}
$$

$$
r_i \leftarrow \tilde{r}_{j(i)} \geq \tilde{r}_i \quad \forall i \in \mathcal{T}
$$

Social Choice Function

- $f(\theta):\Theta\mapsto \mathcal Y$ maps type θ to collective choice $\mathsf y=(\mathsf d,\mathsf r)\in \mathcal Y=\{0,1\}^n\times \mathbb R_+^n$
	- Vector of allocation decisions $\mathbf{d} \in \{0,1\}^n$
	- Vector of rewards $\mathbf{r} \in \mathbb{R}_+^n$

VCG-Style Mechanism

$$
j_{\max} = \min_{j} \left\{ j \in \mathbb{N}_+ \middle| \sum_{i=1}^j \delta_i(\tilde{r}_j | \boldsymbol{\theta}_i) \geq M \right\}
$$

$$
j(i) = \min_{k} \left\{ k \in \mathbb{N}_+ \middle| \sum_{s=1, s \neq i}^k \delta_s(\tilde{r}_k | \boldsymbol{\theta}_s) \geq M \right\} \qquad \forall i \in \{1, ..., j_{\max}\} =: \mathcal{T}
$$

$$
r_i \leftarrow \tilde{r}_{i(\lambda)} > \tilde{r}_i \quad \forall i \in \mathcal{T}
$$

Social Choice Function

- $f(\theta):\Theta\mapsto \mathcal Y$ maps type θ to collective choice $\mathsf y=(\mathsf d,\mathsf r)\in \mathcal Y=\{0,1\}^n\times \mathbb R_+^n$
	- Vector of allocation decisions $\mathbf{d} \in \{0,1\}^n$
	- Vector of rewards $\mathbf{r} \in \mathbb{R}_+^n$

VCG-Style Mechanism

$$
j_{\max} = \min_{j} \left\{ j \in \mathbb{N}_+ \middle| \sum_{i=1}^{j} \delta_i(\tilde{r}_j | \theta_i) \geq M \right\}
$$

$$
j(i) = \min_{k} \left\{ k \in \mathbb{N}_+ \middle| \sum_{s=1, s \neq i}^{k} \delta_s(\tilde{r}_k | \theta_s) \geq M \right\} \qquad \forall i \in \{1, ..., j_{\max}\} =: \mathcal{T}
$$

$$
r_i \leftarrow \tilde{r}_{j(i)} \geq \tilde{r}_i \quad \forall i \in \mathcal{T}
$$

Recall: $\bm{\theta}_i=(\alpha_i\sim\digamma_\alpha,\bm{\xi}_i\sim\digamma_\bm{\xi})$, where $\bar{x}_i\sim\digamma_{\bm{\xi}_i}\sim\digamma_{\bm{\xi}_i\sim\digamma_\bm{\xi}}$, G lognormal

• G is parameterized by shape, location, scale parameters:

• Draw user types from hierarchical model

- $n = 500$ users, $q = 5.0$, $\alpha_i \sim \text{unif}[0.05, 0.06]$
- **Comparison to omniscient DR Provider**

- Recall: $\bm{\theta}_i=(\alpha_i\sim\digamma_\alpha,\bm{\xi}_i\sim\digamma_\bm{\xi})$, where $\bar{x}_i\sim\digamma_{\bm{\xi}_i}\sim\digamma_{\bm{\xi}_i\sim\digamma_\bm{\xi}}$, G lognormal
- G is parameterized by shape, location, scale parameters:

• $n = 500$ users, $q = 5.0$, $\alpha_i \sim$ unif[0.05, 0.06]

• Comparison to omniscient DR Provider

- Recall: $\bm{\theta}_i=(\alpha_i\sim\digamma_\alpha,\bm{\xi}_i\sim\digamma_\bm{\xi})$, where $\bar{x}_i\sim\digamma_{\bm{\xi}_i}\sim\digamma_{\bm{\xi}_i\sim\digamma_\bm{\xi}}$, G lognormal
- G is parameterized by shape, location, scale parameters:

• $n = 500$ users, $q = 5.0$, $\alpha_i \sim \text{unif}[0.05, 0.06]$

• Comparison to omniscient DR Provider

- Recall: $\bm{\theta}_i=(\alpha_i\sim\digamma_\alpha,\bm{\xi}_i\sim\digamma_\bm{\xi})$, where $\bar{x}_i\sim\digamma_{\bm{\xi}_i}\sim\digamma_{\bm{\xi}_i\sim\digamma_\bm{\xi}}$, G lognormal
- G is parameterized by shape, location, scale parameters:

Fundamental Problem of Causal Inference¹

- Either the outcome under treatment or under control is observed, but not both
- **•** That is, the counterfactual consumption is always unobserved

 \bullet $\hat{\mathsf{x}}_i$ is an estimate of the counterfactual, prone to estimation inaccuracies

- Calculate \hat{x}_i as the mean of the 10 previous consumptions
-
-

¹P. W. Holland. "Statistics and Causal Inference". In: Journal of the American Statistical Association 81.396 (1986), pp. 945–960.

Fundamental Problem of Causal Inference¹

- Either the outcome under treatment or under control is observed, but not both
- **•** That is, the counterfactual consumption is always unobserved
- $\hat{\mathbf{x}}_i$ is an estimate of the counterfactual, prone to estimation inaccuracies
- Calculate \hat{x}_i as the mean of the 10 previous consumptions
-
-

¹P. W. Holland. "Statistics and Causal Inference". In: Journal of the American Statistical Association 81.396 (1986), pp. 945–960.

Fundamental Problem of Causal Inference¹

- Either the outcome under treatment or under control is observed, but not both
- **•** That is, the counterfactual consumption is always unobserved
- $\hat{\mathbf{x}}_i$ is an estimate of the counterfactual, prone to estimation inaccuracies CAISO 10-in-10 Baseline²
	- Calculate \hat{x}_i as the mean of the 10 previous consumptions
	-
	-

¹P. W. Holland. "Statistics and Causal Inference". In: Journal of the American Statistical Association 81.396 (1986), pp. 945–960.

 2 California Independent System Operator Corporation (CAISO): Fifth Replacement FERC Electric Tariff. 2014 .

Fundamental Problem of Causal Inference¹

- Either the outcome under treatment or under control is observed, but not both
- **•** That is, the counterfactual consumption is always unobserved
- $\hat{\mathbf{x}}_i$ is an estimate of the counterfactual, prone to estimation inaccuracies

CAISO 10-in-10 Baseline²

- Calculate \hat{x}_i as the mean of the 10 previous consumptions
- Reduction Components: $\delta_i = (\hat{x}_i \bar{x}_i) + \bar{x}_i(1 e^{-\alpha_i r_i}) =: \delta_i^{\text{BL}} + \delta_i^r$
-

¹P. W. Holland. "Statistics and Causal Inference". In: Journal of the American Statistical Association 81.396 (1986), pp. 945–960.

 2 California Independent System Operator Corporation (CAISO): Fifth Replacement FERC Electric Tariff. 2014.

Fundamental Problem of Causal Inference¹

- Either the outcome under treatment or under control is observed, but not both
- **•** That is, the counterfactual consumption is always unobserved
- $\hat{\mathbf{x}}_i$ is an estimate of the counterfactual, prone to estimation inaccuracies

CAISO 10-in-10 Baseline²

- Calculate \hat{x}_i as the mean of the 10 previous consumptions
- Reduction Components: $\delta_i = (\hat{x}_i \bar{x}_i) + \bar{x}_i(1 e^{-\alpha_i r_i}) =: \delta_i^{\text{BL}} + \delta_i^r$

 \bullet Virtual Reductions due to variance in \hat{x}_i estimation

¹P. W. Holland. "Statistics and Causal Inference". In: Journal of the American Statistical Association 81.396 (1986), pp. 945–960.

 2 California Independent System Operator Corporation (CAISO): Fifth Replacement FERC Electric Tariff. 2014.

Conclusion

Summary

- Modeled Residential Demand Response in Mechanism Design framework
- **Intercept and slope of demand curve are users' private information**
- DR Provider elicits private information with incentive compatible auction
- **•** Practical Issue: "Baseline Gaming"

Future Work

- **Improve baseline estimates (counterfactuals)**
- Analyze serial correlation of consumption time series
- Extend one-shot problem to online, sequential auctions

THANK YOU! QUESTIONS?