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(Residential) Demand Response

@ DR Provider seeks to collect “reductions” of electricity consumption from its
customers under contract in exchange for monetary incentives

Challenges
@ How can reduction be measured?
@ How heterogeneous are users in their reduction behavior?

o Can users “game” the system by misreporting their preferences?
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DR Provider and End Users

End Users

@ Each user i € 7 has estimated baseline consumption X; € Ry and actual,
materialized consumption x; € R

o Estimated reduction is 6; = (Xi — xi)LieT
@ Demand curve / price elasticity of demand: x;(ri) = Xj exp(—«iri)

@ User i’s utility function: u; = (ri[& — xi]+ — qi[xi — %i]+) LieT

DR Provider

subject to  Es, .5,

Z_GI 5,} > M.

@ Incentivize subset of end-users 7 C Z with user-specific, per-unit rewards
{rneRy |ieT}
o Charge user i per-unit penalty gi € Ry for increasing consumption

@ Collect M € Ry units of aggregate reduction while minimizing payment to users:
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o Base consumption X; is stochastic, does not follow rational profit-maximization
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t=20 t=1 t=2 1 t=3
: % % : % >
6 and x Users reveal DRP implements 1 Users’ consumptions
materialize types z f(z) = (d,r), 1 in response to
to DRP informs users 1
1

@ User i's type is 0; = (aj ~ Fu, & ~ F¢), where X; ~ G,

o Elasticity «; characterizes willingness to reduce
o Base consumption X; is stochastic, does not follow rational profit-maximization
e Fit F and G from smart meter data in California

Log-Normal Empirical Distribution

1
é 0.6 K \|

--= Fit
[0 Empirical

~ G&iNFE

X; ~ Lognormal(o, s, £)
o~ N(pn, 0n)

s ~ Cauchy (£, sc)

¢ ~ Exponential(\e)
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@ Revelation Principle: Given a DSE, focus on direct mechanisms — Users report their
type truthfully z; = 6;

Individual Rationality Constraints
o Expected payoff (user’s utility) must be larger than any outside option:

IE[U,'(/'—(G,'7 Z_,'))] > E[(r;[)?,- — X,']+ - q;[x,- - )?,']+) ].;g'r] =0 Viel ze®

=utility if not targeted
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o Vector of rewards r € R,
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Social Choice Function
e f(0): ® — Y maps type 0 to collective choice y = (d,r) € Y = {0,1}" x R}
e Vector of allocation decisions d € {0,1}"
o Vector of rewards r € R,
VCG-Style Mechanism
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@ Recall: 6; = (aj ~ Fa, & ~ F¢), where X; ~ Ge; ~ GE/.NFe, G lognormal
o G is parameterized by shape, location, scale parameters:

Distribution of Log-Normal Parameters of Consumption Distribution Across Users
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@ Draw user types from hierarchical model
@ n =500 users, g = 5.0, a;j ~ unif[0.05,0.06]
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@ Draw user types from hierarchical model
@ n =500 users, g = 5.0, a;j ~ unif[0.05,0.06]
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Virtual Reductions from Baseline Inaccuracies

Fundamental Problem of Causal Inference!
@ Either the outcome under treatment or under control is observed, but not both
@ That is, the counterfactual consumption is always unobserved
@ X; is an estimate of the counterfactual, prone to estimation inaccuracies
CAISO 10-in-10 Baseline?
o Calculate X; as the mean of the 10 previous consumptions
@ Reduction Components: §; = (& — x;) + x;i(1 — e %) =: §B- 4 467

@ Virtual Reductions due to variance in X; estimation

Effect of BL Accuracy on §"" vs. &'
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Lp. W. Holland. “Statistics and Causal Inference”. In: Journal of the American Statistical Association 81.396 (1986), pp. 945-960.

2 California Independent System Operator Corporation (CAISO): Fifth Replacement FERC Electric Tariff. 2014.



Conclusion

Summary
@ Modeled Residential Demand Response in Mechanism Design framework
@ Intercept and slope of demand curve are users’ private information
@ DR Provider elicits private information with incentive compatible auction
°

Practical Issue: “Baseline Gaming”

Future Work
@ Improve baseline estimates (counterfactuals)
@ Analyze serial correlation of consumption time series

@ Extend one-shot problem to online, sequential auctions
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