Hedging Strategies for Load-Serving Entities in Wholesale Electricity Markets

D.P. Zhou, M.A. Dahleh, and C.J. Tomlin

[datong.zhou, tomlin]@berkeley.edu, dahleh@mit.edu

December 12, 2017

Figure: Supply and Demand in Electricity Markets

Figure: Supply and Demand in Electricity Markets

Restructuring of Electricity Markets

• 1996: FERC Orders 888 and 889 to promote competition and market efficiency

Figure: Supply and Demand in Electricity Markets

Restructuring of Electricity Markets

- 1996: FERC Orders 888 and 889 to promote competition and market efficiency
- Retention of quasi-fixed electricity tariffs vs. price and quantity risks

Figure: Supply and Demand in Electricity Markets

Restructuring of Electricity Markets

- 1996: FERC Orders 888 and 889 to promote competition and market efficiency
- Retention of quasi-fixed electricity tariffs vs. price and quantity risks
- 2000: Wholesale prices of \approx 150 USD/MWh in California

Figure: Supply and Demand in Electricity Markets

Restructuring of Electricity Markets

- 1996: FERC Orders 888 and 889 to promote competition and market efficiency
- Retention of quasi-fixed electricity tariffs vs. price and quantity risks
- \bullet 2000: Wholesale prices of ≈ 150 USD/MWh in California
- Introduction of Demand Response and contracts between utilities and generators

Background

- Electric utilities face *price and quantity risks*:
 - Provide electricity to end users instantaneously, at all times, at a fixed tariff
 - Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
 - Energy storage prohibitively costly
- Generating companies face similar issues

- Contracts between generators and utility to alleviate risk?
- Hedging Instruments
 - One-to-one contracts/options between generators and the utility
 - Demand Response to relay risk from utility to end-users
- Comparison of utility profit under different options in the face of uncertainty?

Background

- Electric utilities face *price and quantity risks*:
 - Provide electricity to end users instantaneously, at all times, at a fixed tariff
 - Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
 - Energy storage prohibitively costly
- Generating companies face similar issues

- Contracts between generators and utility to alleviate risk?
- Hedging Instruments
 - One-to-one contracts/options between generators and the utility
 - Demand Response to relay risk from utility to end-users
- Comparison of utility profit under different options in the face of uncertainty?

Background

- Electric utilities face *price and quantity risks*:
 - Provide electricity to end users instantaneously, at all times, at a fixed tariff
 - Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
 - Energy storage prohibitively costly
- Generating companies face similar issues

- Contracts between generators and utility to alleviate risk?
- Hedging Instruments
 - One-to-one contracts/options between generators and the utility
 - Demand Response to relay risk from utility to end-users
- Comparison of utility profit under different options in the face of uncertainty?

Background

- Electric utilities face *price and quantity risks*:
 - Provide electricity to end users instantaneously, at all times, at a fixed tariff
 - Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
 - Energy storage prohibitively costly
- Generating companies face similar issues

- Contracts between generators and utility to alleviate risk?
- Hedging Instruments
 - One-to-one contracts/options between generators and the utility
 - Demand Response to relay risk from utility to end-users
- Comparison of utility profit under different options in the face of uncertainty?

Background

- Electric utilities face *price and quantity risks*:
 - Provide electricity to end users instantaneously, at all times, at a fixed tariff
 - Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
 - Energy storage prohibitively costly
- Generating companies face similar issues

- Contracts between generators and utility to alleviate risk?
- Hedging Instruments
 - One-to-one contracts/options between generators and the utility
 - Demand Response to relay risk from utility to end-users
- Comparison of utility profit under different options in the face of uncertainty?

Background

- Electric utilities face *price and quantity risks*:
 - Provide electricity to end users instantaneously, at all times, at a fixed tariff
 - Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
 - Energy storage prohibitively costly
- Generating companies face similar issues

- Contracts between generators and utility to alleviate risk?
- Hedging Instruments
 - One-to-one contracts/options between generators and the utility
 - Demand Response to relay risk from utility to end-users
- Comparison of utility profit under different options in the face of uncertainty?

Background

- Electric utilities face *price and quantity risks*:
 - Provide electricity to end users instantaneously, at all times, at a fixed tariff
 - Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
 - Energy storage prohibitively costly
- Generating companies face similar issues

- Contracts between generators and utility to alleviate risk?
- Hedging Instruments
 - One-to-one contracts/options between generators and the utility
 - Demand Response to relay risk from utility to end-users
- Comparison of utility profit under different options in the face of uncertainty?

Background

- Electric utilities face *price and quantity risks*:
 - Provide electricity to end users instantaneously, at all times, at a fixed tariff
 - Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
 - Energy storage prohibitively costly
- Generating companies face similar issues

Open Questions

- Contracts between generators and utility to alleviate risk?
- Hedging Instruments
 - One-to-one contracts/options between generators and the utility
 - Demand Response to relay risk from utility to end-users

• Comparison of utility profit under different options in the face of uncertainty?

Background

- Electric utilities face *price and quantity risks*:
 - Provide electricity to end users instantaneously, at all times, at a fixed tariff
 - Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
 - Energy storage prohibitively costly
- Generating companies face similar issues

Open Questions

- Contracts between generators and utility to alleviate risk?
- Hedging Instruments
 - One-to-one contracts/options between generators and the utility
 - Demand Response to relay risk from utility to end-users

• Comparison of utility profit under different options in the face of uncertainty?

Background

- Electric utilities face *price and quantity risks*:
 - Provide electricity to end users instantaneously, at all times, at a fixed tariff
 - Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
 - Energy storage prohibitively costly
- Generating companies face similar issues

Open Questions

- Contracts between generators and utility to alleviate risk?
- Hedging Instruments
 - One-to-one contracts/options between generators and the utility
 - Demand Response to relay risk from utility to end-users

• Comparison of utility profit under different options in the face of uncertainty?

Background

- Electric utilities face *price and quantity risks*:
 - Provide electricity to end users instantaneously, at all times, at a fixed tariff
 - Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
 - Energy storage prohibitively costly
- Generating companies face similar issues

- Contracts between generators and utility to alleviate risk?
- Hedging Instruments
 - One-to-one contracts/options between generators and the utility
 - Demand Response to relay risk from utility to end-users
- Comparison of utility profit under different options in the face of uncertainty?

 $\textbf{Generator} \, \leftrightarrow \, \textbf{Utility}$

$\textbf{Generator} \, \leftrightarrow \, \textbf{Utility}$

• Forward Contract: Deliver $\bar{q} \in \mathbb{R}_+$ units at price $\bar{\lambda}_F \in \mathbb{R}_+$ at some point in the future

$\textbf{Generator} \leftrightarrow \textbf{Utility}$

• Forward Contract: Deliver $\bar{q} \in \mathbb{R}_+$ units at price $\bar{\lambda}_F \in \mathbb{R}_+$ at some point in the future

$$\prod_F = \lambda_f d - \bar{\lambda}_F \bar{q} - \lambda_s [d - \bar{q}]_+$$

$\textbf{Generator} \leftrightarrow \textbf{Utility}$

• Forward Contract: Deliver $\bar{q} \in \mathbb{R}_+$ units at price $\bar{\lambda}_F \in \mathbb{R}_+$ at some point in the future

 $\Pi_F = \lambda_f d - ar{\lambda}_F ar{q} - \lambda_s [d - ar{q}]_+$

$\textbf{Generator} \leftrightarrow \textbf{Utility}$

• Forward Contract: Deliver $\bar{q} \in \mathbb{R}_+$ units at price $\bar{\lambda}_F \in \mathbb{R}_+$ at some point in the future

$$\Pi_F = \lambda_f d - \bar{\lambda}_F \bar{q} - \lambda_s [d - \bar{q}]_+$$

 $\Pi_{C} = \lambda_{f} d - \lambda_{s} [d - \bar{q}]_{+} - P \bar{q}$ $- \min(\bar{\lambda}_{C}, \lambda_{s}) \cdot \min(d, \bar{q})$

$\textbf{Generator} \leftrightarrow \textbf{Utility}$

• Forward Contract: Deliver $\bar{q} \in \mathbb{R}_+$ units at price $\bar{\lambda}_F \in \mathbb{R}_+$ at some point in the future

$$\prod_F = \lambda_f d - \bar{\lambda}_F \bar{q} - \lambda_s [d - \bar{q}]_+$$

 Call Option: Utility can, but does not have to purchase q
∈ ℝ₊ units at price λ_C ∈ ℝ₊. Premium P ∈ ℝ₊ per reserved unit.

 $\Pi_{C} = \lambda_{f} d - \lambda_{s} \left[d - \bar{q} \right]_{+} - P \bar{q}$ $-\min(\bar{\lambda}_{C}, \lambda_{s}) \cdot \min(d, \bar{q})$

$\textbf{Utility} \leftrightarrow \textbf{Users}$

• Demand Response: Give incentive $r \in \mathbb{R}_+$ to user. User *reduces* consumption by $h(r) \in \mathbb{R}_+$

$$\Pi_{\rm DR} = (\lambda_f - \lambda_s) d(r) - r$$

- Demand d, CDF F, PDF f
- Wholesale price λ_s , CDF G
- Fixed residential tariff λ_f
- Utility's profit Π

- Demand d, CDF F, PDF f
- Wholesale price λ_s , CDF G
- Fixed residential tariff λ_f
- Utility's profit Π

- Demand d, CDF F, PDF f
- Wholesale price λ_s , CDF G
- Fixed residential tariff λ_f
- Utility's profit Π

Influence of Uncertainty

Influence of Distribution Tail

• Conditional Value-at-Risk (CVaR) given confidence level $\alpha \in (0, 1)$ and CDF $F(\cdot)$ of random variable X:

$$\mathsf{CVaR}_{\alpha}(X) = \mathbb{E}[X \mid X \ge F^{-1}(\alpha)]$$

• Expected loss in the worst $(1 - \alpha) \cdot 100\%$ of cases / expectation of $(1 - \alpha)$ probability tail of X

$$\mathbb{E}[\Pi_F^*] = \lambda_f \mathbb{E}[d] - \bar{\lambda}_F \cdot \text{CVaR}_{\alpha_F}(d)$$
$$\mathbb{E}[\Pi_C^*] = \left(\lambda_f - \bar{\lambda}_C + \int_0^{\bar{\lambda}_C} G(y) dy\right) \mathbb{E}[d] - P \cdot \text{CVaR}_{\alpha_C}(d)$$
$$\mathbb{E}[\Pi_{\text{DR}}^*] = -\frac{1}{\alpha} \cdot \text{CVaR}_{\alpha_{\text{DR}}}(d)$$

Expected profit decreases linearly in CVaR.

Influence of Uncertainty

Influence of Distribution Tail

• Conditional Value-at-Risk (CVaR) given confidence level $\alpha \in (0, 1)$ and CDF $F(\cdot)$ of random variable X:

$$\mathsf{CVaR}_{\alpha}(X) = \mathbb{E}[X \mid X \ge F^{-1}(\alpha)]$$

• Expected loss in the worst $(1 - \alpha) \cdot 100\%$ of cases / expectation of $(1 - \alpha)$ probability tail of X

$$\mathbb{E}[\Pi_{F}^{*}] = \lambda_{f} \mathbb{E}[d] - \bar{\lambda}_{F} \cdot \operatorname{CVaR}_{\alpha_{F}}(d)$$
$$\mathbb{E}[\Pi_{C}^{*}] = \left(\lambda_{f} - \bar{\lambda}_{C} + \int_{0}^{\bar{\lambda}_{C}} G(y) dy\right) \mathbb{E}[d] - P \cdot \operatorname{CVaR}_{\alpha_{C}}(d)$$
$$\mathbb{E}[\Pi_{\mathrm{DR}}^{*}] = -\frac{1}{\alpha} \cdot \operatorname{CVaR}_{\alpha_{\mathrm{DR}}}(d)$$

Expected profit decreases linearly in CVaR

Influence of Uncertainty

Influence of Distribution Tail

• Conditional Value-at-Risk (CVaR) given confidence level $\alpha \in (0, 1)$ and CDF $F(\cdot)$ of random variable X:

$$\mathsf{CVaR}_{\alpha}(X) = \mathbb{E}[X \mid X \ge F^{-1}(\alpha)]$$

• Expected loss in the worst $(1 - \alpha) \cdot 100\%$ of cases / expectation of $(1 - \alpha)$ probability tail of X

$$\mathbb{E}[\Pi_{F}^{*}] = \lambda_{f} \mathbb{E}[d] - \bar{\lambda}_{F} \cdot \operatorname{CVaR}_{\alpha_{F}}(d)$$
$$\mathbb{E}[\Pi_{C}^{*}] = \left(\lambda_{f} - \bar{\lambda}_{C} + \int_{0}^{\bar{\lambda}_{C}} G(y) dy\right) \mathbb{E}[d] - P \cdot \operatorname{CVaR}_{\alpha_{C}}(d)$$
$$\mathbb{E}[\Pi_{DR}^{*}] = -\frac{1}{\alpha} \cdot \operatorname{CVaR}_{\alpha_{DR}}(d)$$

• Expected profit decreases linearly in CVaR.

Influence of Uncertainty (cont'd.)

Influence of Statistical Dispersion

- Intuition: The more spread out $F(\cdot)$, the lower the expected profit.
- For simplicity: Express optimal profits in terms of standard deviation σ of uniform distribution on [d_{min}, d_{max}]

$$\begin{split} \mathbb{E}[\Pi_F^*] &= \lambda_f \mathbb{E}[d] - \bar{\lambda}_F d_{\min} - \sqrt{3} \mathbb{E}[\lambda_s] (1 - \alpha_F^2) \sigma \\ \mathbb{E}\Pi_C^* &= \left(\lambda_f - \bar{\lambda}_C + \int_0^{\bar{\lambda}_C} G(y) dy\right) \mathbb{E}[d] - P d_{\min} \\ &- \sqrt{3} \left(\mathbb{E}[\lambda_s] - \bar{\lambda}_C + \int_0^{\bar{\lambda}_C} G(y) dy\right) (1 - \alpha_C^2) \sigma \\ \mathbb{E}[\Pi_{\mathrm{DR}}^*] &= -d_{\min} / \alpha - \sqrt{3} (\mathbb{E}[\lambda_s] - \lambda_f) (1 - \alpha_{\mathrm{DR}}^2) \sigma \end{split}$$

Expected profit decreases linearly in σ.

Influence of Uncertainty (cont'd.)

Influence of Statistical Dispersion

- Intuition: The more spread out $F(\cdot)$, the lower the expected profit.
- For simplicity: Express optimal profits in terms of standard deviation σ of uniform distribution on [d_{min}, d_{max}]

$$\mathbb{E}[\Pi_F^*] = \lambda_f \mathbb{E}[d] - \bar{\lambda}_F d_{\min} - \sqrt{3} \mathbb{E}[\lambda_s] (1 - \alpha_F^2) \sigma$$
$$\mathbb{E}\Pi_C^* = \left(\lambda_f - \bar{\lambda}_C + \int_0^{\bar{\lambda}_C} G(y) dy\right) \mathbb{E}[d] - P d_{\min}$$
$$-\sqrt{3} \left(\mathbb{E}[\lambda_s] - \bar{\lambda}_C + \int_0^{\bar{\lambda}_C} G(y) dy\right) (1 - \alpha_C^2) \sigma$$
$$\mathbb{E}[\Pi_{\mathrm{DR}}^*] = -d_{\min} / \alpha - \sqrt{3} (\mathbb{E}[\lambda_s] - \lambda_f) (1 - \alpha_{\mathrm{DR}}^2) \sigma$$

Expected profit decreases linearly in σ.

Influence of Uncertainty (cont'd.)

Influence of Statistical Dispersion

- Intuition: The more spread out $F(\cdot)$, the lower the expected profit.
- For simplicity: Express optimal profits in terms of standard deviation σ of uniform distribution on [d_{min}, d_{max}]

$$\mathbb{E}[\Pi_{F}^{*}] = \lambda_{f} \mathbb{E}[d] - \bar{\lambda}_{F} d_{\min} - \sqrt{3} \mathbb{E}[\lambda_{s}](1 - \alpha_{F}^{2})\sigma$$
$$\mathbb{E}\Pi_{C}^{*} = \left(\lambda_{f} - \bar{\lambda}_{C} + \int_{0}^{\bar{\lambda}_{C}} G(y)dy\right) \mathbb{E}[d] - Pd_{\min}$$
$$-\sqrt{3} \left(\mathbb{E}[\lambda_{s}] - \bar{\lambda}_{C} + \int_{0}^{\bar{\lambda}_{C}} G(y)dy\right)(1 - \alpha_{C}^{2})\sigma$$
$$\mathbb{E}[\Pi_{DR}^{*}] = -d_{\min}/\alpha - \sqrt{3}(\mathbb{E}[\lambda_{s}] - \lambda_{f})(1 - \alpha_{DR}^{2})\sigma$$

• Expected profit decreases linearly in *σ*.

Data Generation for Simulations

Demand Distribution

• Aggregate hourly smart meter data, provided by OhmConnect, Inc.

Data Generation for Simulations

Demand Distribution

• Aggregate hourly smart meter data, provided by OhmConnect, Inc.

Distribution of LMPs

• Scrape 5-minute LMPs from public sources; aggregate to 60-minute values

Pairwise Comparison (I)

DR vs. Forward Contract

Pairwise Comparison (II)

DR vs. Call

Pairwise Comparison (III)

Forward Contract vs. Call

Summary

- Analyzed hedging instruments for electric utilities to mitigate price and quantity risks
- Profit maximization problem from the perspective of the utility
- Expected profit monotonically decreasing in CVaR / statistical dispersion
- Pairwise comparison of hedging instruments

- Take into account operational constraints of electric grid (capacities, congestion)
- Use forecasting methods to model uncertainty in wholesale prices and demand
- Mechanism Design framework between generating companies and utilities

Summary

- Analyzed hedging instruments for electric utilities to mitigate price and quantity risks
- Profit maximization problem from the perspective of the utility
- Expected profit monotonically decreasing in CVaR / statistical dispersion
- Pairwise comparison of hedging instruments

- Take into account operational constraints of electric grid (capacities, congestion)
- Use forecasting methods to model uncertainty in wholesale prices and demand
- Mechanism Design framework between generating companies and utilities

Summary

- Analyzed hedging instruments for electric utilities to mitigate price and quantity risks
- Profit maximization problem from the perspective of the utility
- $\bullet\,$ Expected profit monotonically decreasing in CVaR / statistical dispersion
- Pairwise comparison of hedging instruments

- Take into account operational constraints of electric grid (capacities, congestion)
- Use forecasting methods to model uncertainty in wholesale prices and demand
- Mechanism Design framework between generating companies and utilities

Summary

- Analyzed hedging instruments for electric utilities to mitigate price and quantity risks
- Profit maximization problem from the perspective of the utility
- $\bullet\,$ Expected profit monotonically decreasing in CVaR / statistical dispersion
- Pairwise comparison of hedging instruments

- Take into account operational constraints of electric grid (capacities, congestion)
- Use forecasting methods to model uncertainty in wholesale prices and demand
- Mechanism Design framework between generating companies and utilities

Summary

- Analyzed hedging instruments for electric utilities to mitigate price and quantity risks
- Profit maximization problem from the perspective of the utility
- $\bullet\,$ Expected profit monotonically decreasing in CVaR / statistical dispersion
- Pairwise comparison of hedging instruments

- Take into account operational constraints of electric grid (capacities, congestion)
- Use forecasting methods to model uncertainty in wholesale prices and demand
- Mechanism Design framework between generating companies and utilities

Summary

- Analyzed hedging instruments for electric utilities to mitigate price and quantity risks
- Profit maximization problem from the perspective of the utility
- $\bullet\,$ Expected profit monotonically decreasing in CVaR / statistical dispersion
- Pairwise comparison of hedging instruments

- Take into account operational constraints of electric grid (capacities, congestion)
- Use forecasting methods to model uncertainty in wholesale prices and demand
- Mechanism Design framework between generating companies and utilities

Summary

- Analyzed hedging instruments for electric utilities to mitigate price and quantity risks
- Profit maximization problem from the perspective of the utility
- $\bullet\,$ Expected profit monotonically decreasing in CVaR / statistical dispersion
- Pairwise comparison of hedging instruments

- Take into account operational constraints of electric grid (capacities, congestion)
- Use forecasting methods to model uncertainty in wholesale prices and demand
- Mechanism Design framework between generating companies and utilities

THANK YOU! QUESTIONS?