Hedging Strategies for Load-Serving Entities in Wholesale Electricity Markets

D.P. Zhou, M.A. Dahleh, and C.J. Tomlin

[datong.zhou, tomlin]@berkeley.edu, dahleh@mit.edu

December 12, 2017

Figure: Supply and Demand in Electricity Markets

Figure: Supply and Demand in Electricity Markets

Restructuring of Electricity Markets

1996: FERC Orders 888 and 889 to promote competition and market efficiency

Figure: Supply and Demand in Electricity Markets

Restructuring of Electricity Markets

- 1996: FERC Orders 888 and 889 to promote competition and market efficiency
- Retention of quasi-fixed electricity tariffs vs. price and quantity risks

Figure: Supply and Demand in Electricity Markets

Restructuring of Electricity Markets

- 1996: FERC Orders 888 and 889 to promote competition and market efficiency
- Retention of quasi-fixed electricity tariffs vs. price and quantity risks
- 2000: Wholesale prices of \approx 150 USD/MWh in California

Figure: Supply and Demand in Electricity Markets

Restructuring of Electricity Markets

- 1996: FERC Orders 888 and 889 to promote competition and market efficiency
- Retention of quasi-fixed electricity tariffs vs. price and quantity risks
- \bullet 2000: Wholesale prices of \approx 150 USD/MWh in California
- **Introduction of Demand Response and contracts between utilities and generators**

- Electric utilities face price and quantity risks:
	- Provide electricity to end users
	- Locational Marginal Prices (LMPs)
	- Energy storage prohibitively costly
- **Generating companies face similar**

- Contracts between generators and utility to alleviate risk?
- **Hedging Instruments**
	- One-to-one contracts/options between generators and the utility
	- Demand Response to relay risk from utility to end-users
- Comparison of utility profit under different options in the face of uncertainty?

- Electric utilities face *price and quantity* risks:
	- Provide electricity to end users instantaneously, at all times, at a fixed tariff
	- \bullet
	- Energy storage prohibitively costly
- **Generating companies face similar**

- Contracts between generators and utility to alleviate risk?
- **Hedging Instruments**
	- One-to-one contracts/options between generators and the utility
	- Demand Response to relay risk from utility to end-users
- Comparison of utility profit under different options in the face of uncertainty?

- Electric utilities face *price and quantity* risks:
	- Provide electricity to end users instantaneously, at all times, at a fixed tariff
	- Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
	- Energy storage prohibitively costly
- **Generating companies face similar**

- Contracts between generators and utility to alleviate risk?
- **Hedging Instruments**
	- One-to-one contracts/options between generators and the utility
	- Demand Response to relay risk from utility to end-users
- Comparison of utility profit under different options in the face of uncertainty?

- Electric utilities face *price and quantity* risks:
	- Provide electricity to end users instantaneously, at all times, at a fixed tariff
	- Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
	- **•** Energy storage prohibitively costly
- **Generating companies face similar**

- Contracts between generators and utility to alleviate risk?
- **Hedging Instruments**
	- One-to-one contracts/options between generators and the utility
	- Demand Response to relay risk from utility to end-users
- Comparison of utility profit under different options in the face of uncertainty?

- Electric utilities face *price and quantity* risks:
	- Provide electricity to end users instantaneously, at all times, at a fixed tariff
	- Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
	- **•** Energy storage prohibitively costly
- **Generating companies face similar** issues

- Contracts between generators and utility to alleviate risk?
- **Hedging Instruments**
	- One-to-one contracts/options between generators and the utility
	- Demand Response to relay risk from utility to end-users
- Comparison of utility profit under different options in the face of uncertainty?

- Electric utilities face price and quantity risks:
	- Provide electricity to end users instantaneously, at all times, at a fixed tariff
	- Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
	- **•** Energy storage prohibitively costly
- **Generating companies face similar** issues

- Contracts between generators and utility to alleviate risk?
- **Hedging Instruments**
	- One-to-one contracts/options between generators and the utility
	- Demand Response to relay risk from utility to end-users
- Comparison of utility profit under different options in the face of uncertainty?

Background

- Electric utilities face *price and quantity* risks:
	- Provide electricity to end users instantaneously, at all times, at a fixed tariff
	- Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
	- **•** Energy storage prohibitively costly
- **Generating companies face similar** issues

Open Questions

- **•** Contracts between generators and utility to alleviate risk?
- **Hedging Instruments**
	- One-to-one contracts/options between generators and the utility
	- Demand Response to relay risk from utility to end-users
- Comparison of utility profit under different options in the face of uncertainty?

Background

- Electric utilities face *price and quantity* risks:
	- Provide electricity to end users instantaneously, at all times, at a fixed tariff
	- Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
	- **•** Energy storage prohibitively costly
- **Generating companies face similar** issues

Open Questions

- **•** Contracts between generators and utility to alleviate risk?
- **•** Hedging Instruments
	- One-to-one contracts/options between generators and the utility
	- Demand Response to relay risk from utility to end-users

Comparison of utility profit under different options in the face of uncertainty?

Background

- Electric utilities face *price and quantity* risks:
	- Provide electricity to end users instantaneously, at all times, at a fixed tariff
	- Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
	- **•** Energy storage prohibitively costly
- **Generating companies face similar** issues

Open Questions

- **•** Contracts between generators and utility to alleviate risk?
- **•** Hedging Instruments
	- One-to-one contracts/options between generators and the utility
	- Demand Response to relay risk from utility to end-users

Comparison of utility profit under different options in the face of uncertainty?

Background

- Electric utilities face *price and quantity* risks:
	- Provide electricity to end users instantaneously, at all times, at a fixed tariff
	- Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
	- **•** Energy storage prohibitively costly
- **Generating companies face similar** issues

Open Questions

- **•** Contracts between generators and utility to alleviate risk?
- **Hedging Instruments**
	- One-to-one contracts/options between generators and the utility
	- Demand Response to relay risk from utility to end-users

Comparison of utility profit under different options in the face of uncertainty?

Background

- Electric utilities face *price and quantity* risks:
	- Provide electricity to end users instantaneously, at all times, at a fixed tariff
	- Locational Marginal Prices (LMPs) vary due to grid congestion, operational constraints, demand fluctuations
	- **•** Energy storage prohibitively costly
- **Generating companies face similar** issues

Open Questions

- **•** Contracts between generators and utility to alleviate risk?
- **•** Hedging Instruments
	- One-to-one contracts/options between generators and the utility
	- Demand Response to relay risk from utility to end-users
- Comparison of utility profit under different options in the face of uncertainty?

Generator ↔ Utility

Generator ↔ Utility

• Forward Contract: Deliver $\bar{q} \in \mathbb{R}_+$ units at price $\bar{\lambda}_F \in \mathbb{R}_+$ at some point in the future

Generator ↔ Utility

• Forward Contract: Deliver $\bar{q} \in \mathbb{R}_+$ units at price $\bar{\lambda}_F \in \mathbb{R}_+$ at some point in the future

$$
\left|\, \Pi_F = \lambda_f d - \bar{\lambda}_F \bar{q} - \lambda_s [d - \bar{q}]_+\right|
$$

Generator \leftrightarrow Utility

• Forward Contract: Deliver $\bar{q} \in \mathbb{R}_+$ units at price $\bar{\lambda}_F \in \mathbb{R}_+$ at some point in the future

$$
\left|\,\Pi_F=\lambda_f\,d-\bar\lambda_F\,\bar q-\lambda_s\,[d-\bar q]_+\,\right|
$$

• Call Option: Utility can, but does not have to purchase $\bar{q} \in \mathbb{R}_+$ units at price $\bar{\lambda}_C \in \mathbb{R}_+$. Premium $P \in \mathbb{R}_+$ per reserved unit.

Generator \leftrightarrow Utility

• Forward Contract: Deliver $\bar{q} \in \mathbb{R}_+$ units at price $\bar{\lambda}_F \in \mathbb{R}_+$ at some point in the future

$$
\left|\,\Pi_F=\lambda_f\,d-\bar\lambda_F\,\bar q-\lambda_s\,[d-\bar q]_+\,\right|
$$

• Call Option: Utility can, but does not have to purchase $\bar{q} \in \mathbb{R}_+$ units at price $\bar{\lambda}_C \in \mathbb{R}_+$. Premium $P \in \mathbb{R}_+$ per reserved unit.

> $\Pi_C = \lambda_f d - \lambda_s [d - \bar{q}]_+ - P \bar{q}$ $-\mathop{\mathsf{min}}(\bar{\lambda}_\mathcal{C},\lambda_\mathsf{s})\cdot\mathop{\mathsf{min}}(d,\bar{q})$

Utility \leftrightarrow Users

Generator \leftrightarrow Utility

• Forward Contract: Deliver $\bar{q} \in \mathbb{R}_+$ units at price $\bar{\lambda}_F \in \mathbb{R}_+$ at some point in the future

$$
\left|\,\Pi_F=\lambda_f\,d-\bar\lambda_F\,\bar q-\lambda_s\,[d-\bar q]_+\,\right|
$$

• Call Option: Utility can, but does not have to purchase $\bar{q} \in \mathbb{R}_+$ units at price $\bar{\lambda}_C \in \mathbb{R}_+$. Premium $P \in \mathbb{R}_+$ per reserved unit.

> $\Pi_C = \lambda_f d - \lambda_s [d - \bar{q}]_+ - P \bar{q}$ $-\mathop{\mathsf{min}}(\bar{\lambda}_\mathcal{C},\lambda_\mathsf{s})\cdot\mathop{\mathsf{min}}(d,\bar{q})$

Utility \leftrightarrow Users

• Demand Response: Give incentive $r \in \mathbb{R}_+$ to user. User reduces consumption by $h(r) \in \mathbb{R}_+$

$$
\Pi_{\text{DR}} = (\lambda_f - \lambda_s)d(r) - r
$$

- \bullet Demand d, CDF F, PDF f
- Wholesale price λ_s , CDF G
- Fixed residential tariff λ_f
- Utility's profit Π

- \bullet Demand d, CDF F, PDF f
- Wholesale price λ_s , CDF G
- Fixed residential tariff λ_f
- Utility's profit Π

- \bullet Demand d, CDF F, PDF f
- Wholesale price λ_s , CDF G
- Fixed residential tariff λ_f
- Utility's profit Π

Influence of Uncertainty

Influence of Distribution Tail

• Conditional Value-at-Risk (CVaR) given confidence level $\alpha \in (0,1)$ and CDF $F(\cdot)$ of random variable X:

$$
\mathsf{CVaR}_{\alpha}(X) = \mathbb{E}[X \mid X \geq F^{-1}(\alpha)]
$$

 \bullet Expected loss in the worst $(1-\alpha)\cdot 100\%$ of cases / expectation of $(1-\alpha)$

$$
\mathbb{E}[\Pi_F^*] = \lambda_f \mathbb{E}[d] - \bar{\lambda}_F \cdot \text{CVaR}_{\alpha_F}(d)
$$

$$
\mathbb{E}[\Pi_C^*] = \left(\lambda_f - \bar{\lambda}_C + \int_0^{\bar{\lambda}_C} G(y) dy\right) \mathbb{E}[d] - P \cdot \text{CVaR}_{\alpha_C}(d)
$$

$$
\mathbb{E}[\Pi_{\text{DR}}^*] = -\frac{1}{\alpha} \cdot \text{CVaR}_{\alpha_{\text{DR}}}(d)
$$

• Expected profit decreases linearly in CVaR.

Influence of Uncertainty

Influence of Distribution Tail

• Conditional Value-at-Risk (CVaR) given confidence level $\alpha \in (0,1)$ and CDF $F(\cdot)$ of random variable X:

$$
\mathsf{CVaR}_{\alpha}(X) = \mathbb{E}[X \mid X \geq F^{-1}(\alpha)]
$$

• Expected loss in the worst $(1 - \alpha) \cdot 100\%$ of cases / expectation of $(1 - \alpha)$ probability tail of X

$$
\mathbb{E}[\Pi_F^*] = \lambda_f \mathbb{E}[d] - \bar{\lambda}_F \cdot \text{CVaR}_{\alpha_F}(d)
$$

$$
\mathbb{E}[\Pi_C^*] = \left(\lambda_f - \bar{\lambda}_C + \int_0^{\bar{\lambda}_C} G(y)dy\right) \mathbb{E}[d] - P \cdot \text{CVaR}_{\alpha_C}(d)
$$

$$
\mathbb{E}[\Pi_{\text{DR}}^*] = -\frac{1}{\alpha} \cdot \text{CVaR}_{\alpha_{\text{DR}}}(d)
$$

• Expected profit decreases linearly in CVaR.

Influence of Uncertainty

Influence of Distribution Tail

• Conditional Value-at-Risk (CVaR) given confidence level $\alpha \in (0,1)$ and CDF $F(\cdot)$ of random variable X:

$$
\mathsf{CVaR}_{\alpha}(X) = \mathbb{E}[X \mid X \geq F^{-1}(\alpha)]
$$

• Expected loss in the worst $(1 - \alpha) \cdot 100\%$ of cases / expectation of $(1 - \alpha)$ probability tail of X

$$
\mathbb{E}[\Pi_F^*] = \lambda_f \mathbb{E}[d] - \bar{\lambda}_F \cdot \text{CVaR}_{\alpha_F}(d)
$$

$$
\mathbb{E}[\Pi_C^*] = \left(\lambda_f - \bar{\lambda}_C + \int_0^{\bar{\lambda}_C} G(y) dy\right) \mathbb{E}[d] - P \cdot \text{CVaR}_{\alpha_C}(d)
$$

$$
\mathbb{E}[\Pi_{\text{DR}}^*] = -\frac{1}{\alpha} \cdot \text{CVaR}_{\alpha_{\text{DR}}}(d)
$$

• Expected profit decreases linearly in CVaR.

Influence of Uncertainty (cont'd.)

Influence of Statistical Dispersion

- Intuition: The more spread out $F(\cdot)$, the lower the expected profit.
- \bullet For simplicity: Express optimal profits in terms of standard deviation σ of uniform

$$
\mathbb{E}[\Pi_{\Gamma}^{*}] = \lambda_{\Gamma} \mathbb{E}[d] - \bar{\lambda}_{\Gamma} d_{\min} - \sqrt{3} \mathbb{E}[\lambda_{s}](1 - \alpha_{\Gamma}^{2}) \sigma
$$

$$
\mathbb{E} \Pi_{C}^{*} = \left(\lambda_{\Gamma} - \bar{\lambda}_{C} + \int_{0}^{\bar{\lambda}_{C}} G(y) dy\right) \mathbb{E}[d] - P d_{\min}
$$

$$
-\sqrt{3} \left(\mathbb{E}[\lambda_{s}] - \bar{\lambda}_{C} + \int_{0}^{\bar{\lambda}_{C}} G(y) dy\right) (1 - \alpha_{C}^{2}) \sigma
$$

$$
\mathbb{E}[\Pi_{\text{DR}}^{*}] = -d_{\min}/\alpha - \sqrt{3} (\mathbb{E}[\lambda_{s}] - \lambda_{\Gamma})(1 - \alpha_{\text{DR}}^{2}) \sigma
$$

• Expected profit decreases linearly in σ .

Influence of Uncertainty (cont'd.)

Influence of Statistical Dispersion

- Intuition: The more spread out $F(\cdot)$, the lower the expected profit.
- **•** For simplicity: Express optimal profits in terms of standard deviation σ of uniform distribution on $[d_{\min}, d_{\max}]$

$$
\mathbb{E}[\Pi_{\mathsf{F}}^{*}] = \lambda_{\mathsf{f}} \mathbb{E}[d] - \bar{\lambda}_{\mathsf{F}} d_{\min} - \sqrt{3} \mathbb{E}[\lambda_{\mathsf{s}}](1 - \alpha_{\mathsf{F}}^{2}) \sigma
$$

$$
\mathbb{E} \Pi_{\mathsf{C}}^{*} = \left(\lambda_{\mathsf{f}} - \bar{\lambda}_{\mathsf{C}} + \int_{0}^{\bar{\lambda}_{\mathsf{C}}} G(y) dy\right) \mathbb{E}[d] - P d_{\min}
$$

$$
-\sqrt{3} \left(\mathbb{E}[\lambda_{\mathsf{s}}] - \bar{\lambda}_{\mathsf{C}} + \int_{0}^{\bar{\lambda}_{\mathsf{C}}} G(y) dy\right) (1 - \alpha_{\mathsf{C}}^{2}) \sigma
$$

$$
\mathbb{E}[\Pi_{\mathrm{DR}}^{*}] = -d_{\min}/\alpha - \sqrt{3} (\mathbb{E}[\lambda_{\mathsf{s}}] - \lambda_{\mathsf{f}})(1 - \alpha_{\mathrm{DR}}^{2}) \sigma
$$

• Expected profit decreases linearly in σ .

Influence of Uncertainty (cont'd.)

Influence of Statistical Dispersion

- Intuition: The more spread out $F(\cdot)$, the lower the expected profit.
- **•** For simplicity: Express optimal profits in terms of standard deviation σ of uniform distribution on $[d_{\min}, d_{\max}]$

$$
\mathbb{E}[\Pi_{F}^{*}] = \lambda_{f} \mathbb{E}[d] - \bar{\lambda}_{F} d_{\min} - \sqrt{3} \mathbb{E}[\lambda_{s}](1 - \alpha_{F}^{2}) \sigma
$$

$$
\mathbb{E} \Pi_{C}^{*} = \left(\lambda_{f} - \bar{\lambda}_{C} + \int_{0}^{\bar{\lambda}_{C}} G(y) dy\right) \mathbb{E}[d] - P d_{\min}
$$

$$
-\sqrt{3} \left(\mathbb{E}[\lambda_{s}] - \bar{\lambda}_{C} + \int_{0}^{\bar{\lambda}_{C}} G(y) dy\right) (1 - \alpha_{C}^{2}) \sigma
$$

$$
\mathbb{E}[\Pi_{DR}^{*}] = -d_{\min}/\alpha - \sqrt{3} (\mathbb{E}[\lambda_{s}] - \lambda_{f})(1 - \alpha_{DR}^{2}) \sigma
$$

• Expected profit decreases linearly in σ .

Data Generation for Simulations

Demand Distribution

Aggregate hourly smart meter data, provided by OhmConnect, Inc.

Data Generation for Simulations

Demand Distribution

• Aggregate hourly smart meter data, provided by OhmConnect, Inc.

Distribution of LMPs

• Scrape 5-minute LMPs from public sources; aggregate to 60-minute values

Pairwise Comparison (I)

DR vs. Forward Contract

Pairwise Comparison (II)

DR vs. Call

Pairwise Comparison (III)

Forward Contract vs. Call

- Analyzed hedging instruments for electric utilities to mitigate price and quantity risks
- ۰
- ۰
- **•** Pairwise comparison of hedging instruments

- Take into account operational constraints of electric grid (capacities, congestion)
- \bullet
-

- Analyzed hedging instruments for electric utilities to mitigate price and quantity risks
- **Profit maximization problem from the perspective of the utility**
- ۰
- **•** Pairwise comparison of hedging instruments

- Take into account operational constraints of electric grid (capacities, congestion)
- \bullet
-

- Analyzed hedging instruments for electric utilities to mitigate price and quantity risks
- **Profit maximization problem from the perspective of the utility**
- **•** Expected profit monotonically decreasing in CVaR / statistical dispersion
- Pairwise comparison of hedging instruments

- Take into account operational constraints of electric grid (capacities, congestion)
- \bullet
-

- Analyzed hedging instruments for electric utilities to mitigate price and quantity risks
- **Profit maximization problem from the perspective of the utility**
- \bullet Expected profit monotonically decreasing in CVaR / statistical dispersion
- **•** Pairwise comparison of hedging instruments

- Take into account operational constraints of electric grid (capacities, congestion)
- \bullet
-

Summary

- Analyzed hedging instruments for electric utilities to mitigate price and quantity risks
- **Profit maximization problem from the perspective of the utility**
- \bullet Expected profit monotonically decreasing in CVaR / statistical dispersion
- **•** Pairwise comparison of hedging instruments

Future Work

- Take into account operational constraints of electric grid (capacities, congestion)
- \bullet
- Mechanism Design framework between generating companies and utilities

Summary

- Analyzed hedging instruments for electric utilities to mitigate price and quantity risks
- **Profit maximization problem from the perspective of the utility**
- **•** Expected profit monotonically decreasing in CVaR / statistical dispersion
- **•** Pairwise comparison of hedging instruments

Future Work

- Take into account operational constraints of electric grid (capacities, congestion)
- Use forecasting methods to model uncertainty in wholesale prices and demand
-

Summary

- Analyzed hedging instruments for electric utilities to mitigate price and quantity risks
- **Profit maximization problem from the perspective of the utility**
- **•** Expected profit monotonically decreasing in CVaR / statistical dispersion
- **•** Pairwise comparison of hedging instruments

Future Work

- Take into account operational constraints of electric grid (capacities, congestion)
- Use forecasting methods to model uncertainty in wholesale prices and demand
- Mechanism Design framework between generating companies and utilities

THANK YOU! QUESTIONS?