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Electricity Market Model

Electricity Suppliers i ∈ S
Convex, increasing cost function ci (·) : R+ 7→ R+

Given price λ, profit-maximizing production quantity is

si (λ) = arg max
x∈R+

λx − ci (x) = ċ−1
i (λ)

Consumers j ∈ D
Traditionally1: Static utility function for consumption: uj = arg maxx∈R+ vj − λx
Today : Time-varying model with memory uj(t) = f (λ(t), λ(t − 1), uj(t − 1))

Independent System Operator

Solve Economic Dispatch Problem: Maximize social welfare in a network

Subject to transmission, capacity, congestion constraints

maximize
{uj}j∈D,{si}i∈S

∑
j∈D

vj(uj)−
∑
i∈S

ci (si )

subject to
∑
j∈D

uj =
∑
i∈S

si

Assumption: Absence of network constraints
1Mardavij Roozbehani, Munther Dahleh, and Sanjoy K. Mitter. “Volatiliy of Power Grids under Real-Time Pricing”. In: IEEE Transactions on Power

Systems (2012).
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i (λ)

Consumers j ∈ D
Traditionally1: Static utility function for consumption: uj = arg maxx∈R+ vj − λx
Today : Time-varying model with memory uj(t) = f (λ(t), λ(t − 1), uj(t − 1))

Independent System Operator

Solve Economic Dispatch Problem: Maximize social welfare in a network

Subject to transmission, capacity, congestion constraints

maximize
{uj}j∈D,{si}i∈S

∑
j∈D

vj(uj)−
∑
i∈S

ci (si )

subject to
∑
j∈D

uj =
∑
i∈S

si

Assumption: Absence of network constraints
1Mardavij Roozbehani, Munther Dahleh, and Sanjoy K. Mitter. “Volatiliy of Power Grids under Real-Time Pricing”. In: IEEE Transactions on Power

Systems (2012).

2 / 12



Electricity Market Model (cont’d.)

Independent System Operator

maximize
{uj}j∈D,{si}i∈S

∑
j∈D

vj(uj)−
∑
i∈S

ci (si )

subject to
∑
j∈D

uj =
∑
i∈S

si

Consumers do not announce {vj}j∈D ⇒ ISO estimates consumption ûj

Representative Agent Model2: Aggregation of single users / consumers ⇒
Aggregate demand u and supply s

Optimization problem is trivially solved: mins c(s) s.t. û = s −→ c(û)

Ex-Ante Pricing

At time k, uk is observed

ISO predicts ûk+1 = uk

ISO sets price λk+1 = ċ(ûk−1),
announces λk+1 to producer

Consumer decides on consumption uk+1

ûk+1 = uk
λk+1 = ċ(ûk+1)

uk+1 =


static

price memory only

price + cons. memory
λ

u

2Fabio Canova. Methods for Applied Macroeconomic Research. Princeton University Press, 2007.
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uk+1 =


static

price memory only

price + cons. memory
λ

u

2Fabio Canova. Methods for Applied Macroeconomic Research. Princeton University Press, 2007.

3 / 12



Electricity Market Model (cont’d.)

Independent System Operator

maximize
{uj}j∈D,{si}i∈S

∑
j∈D

vj(uj)−
∑
i∈S

ci (si )

subject to
∑
j∈D

uj =
∑
i∈S

si

Consumers do not announce {vj}j∈D ⇒ ISO estimates consumption ûj
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uk+1 =


static

price memory only

price + cons. memory
λ

u

2Fabio Canova. Methods for Applied Macroeconomic Research. Princeton University Press, 2007.

3 / 12



Electricity Market Model (cont’d.)

Independent System Operator

maximize
{uj}j∈D,{si}i∈S

∑
j∈D

vj(uj)−
∑
i∈S

ci (si )

subject to
∑
j∈D

uj =
∑
i∈S

si

Consumers do not announce {vj}j∈D ⇒ ISO estimates consumption ûj
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Electricity Consumption Model

Consumer’s Inventory Problem3

Minimize cost over n slotted intervals k = 0, . . . , n − 1

Per-unit price of electricity: λk

A-priori known demand dk , shiftable / elastic

Backlog xk ≤ 0: Unsatisfied demand

Actual consumption: uk

Backlog disutility: p(·) : R− → R+

Cost for consumption deviation: h(·, ·) : R+ × R+ → R+

minimize
u0,...,un−1

Eλ1,...,λn−1

[
n−1∑
k=0

λkuk + p(xk+1) + h(uk , dk)

]
subject to xk+1 = xk + uk − dk

xk ≤ 0

xn = 0

Assumption

h and p convex in first argument

3P. H. Zipkin. Foundations of Inventory Management. McGraw-Hill/Irwin, 2000.
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Electricity Consumption Model − Solution

Bellman Equation and Dynamic Programming

J∗k = min
uk

λkuk + p(xk+1) + h(uk , dk) + Eλk+1,...,λn−1 [J∗k+1] .

⇒ Solution u∗k is function of previous prices and consumption decisions

Case h ≡ 0 :

u∗n−k = dn−k − ṗ−1

(
λn−k − λn−k−1

k − 1

)
, k = 2, . . . , n

Case h(uk , dk) = ρ(uk − dk)
2 :

u∗k =
dk + Ṽ (λk−1 − λk + 2ρ(dk − dk−1 + uk−1)

2ρṼ + 1
, k = 0, . . . , n − 2

Assumptions

E[λk+1] = λk , k = 0, . . . , n − 2

p(·) is a quadratic function for h 6= 0 ⇒ Vk := p(xk) + J∗k is quadratic
⇒ Ṽ := V̇−1(x) is linear

5 / 12
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dk + Ṽ (λk−1 − λk + 2ρ(dk − dk−1 + uk−1)
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Analysis of Market Stability

Case 1: Static Consumption Model

Utility and cost functions of consumer and producer are constant and time-invariant4

Case 2: Consumption Model with Price Memory

λk+1 = ċ(ûk+1) = ċ(uk) = ċ
(
ṗ−1(−λk)− ṗ−1(−λk−1) + dk

)
For simulation purposes, model p and c as quadratic functions:

c(x) = αx2 p(x) = βx2

Price and consumption dynamics:

λk = −α
β
λk−1 +

α

β
λk−2 + 2αdk

uk =
1

2β
(λk−1 − λk) + dk

System of linear, non-homogeneous difference equations

Stability guaranteed for 0 ≤ ε < 1/2, where ε := α/β

4Mardavij Roozbehani, Munther Dahleh, and Sanjoy K. Mitter. “Volatiliy of Power Grids under Real-Time Pricing”. In: IEEE Transactions on Power
Systems (2012).
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(
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Analysis of Market Stability (cont’d.)

Case 2: Consumption Model with Price Memory

Price and consumption dynamics:

λk = −α
β
λk−1 +

α

β
λk−2 + 2αdk

uk =
1

2β
(λk−1 − λk) + dk

Stability guaranteed for 0 ≤ ε < 1/2, where ε := α/β

Simulation for Constant Demand dk = d
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Prices, ε = 0.48
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Demand ·2α
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Consumption (ε = 0.48)

Consumption (ε = 0.51)

Demand

Parameters Used:

d = 2

β = 4

α = 1.92 or α = 2.04

Initial conditions:
λ0 = λ1 = 3
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Analysis of Market Stability (cont’d.)

Case 2: Consumption Model with Price Memory
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Variable Demand Model

Sinusoid of period 12 hours5: 2αdk = µ+ A sin ((k − 5)π/6)
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Variable Demand Model

5D. Zhou, M. Balandat, and C. Tomlin. “Residential Demand Response Targeting Using Machine Learning with Observational Data”. In: 55th IEEE
Conference on Decision and Control (2016).
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Analysis of Market Stability (cont’d.)

Variable Demand Model
Sinusoid of period 12 hours: 2αdk = µ+ A sin ((k − 5)π/6)

0 6 12 18 23
Hour of the Day
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3.0
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d

Variable Demand Model

Price dynamics:

λk = c1x
k
1 + c2x

k
2 + µ+ e1 sin ((k − 5)π/6) + e2 cos ((k − 5)π/6)

For 0 ≤ ε < 1/2:

λk
k→∞−−−→ µ+

√
e21 + e22︸ ︷︷ ︸

↘ as ε↗, “Damping”

· sin

(
(k − 5)π

6
+
π

3
+ arctan

(
e2 −

√
3e1√

3e2 + e1

))
︸ ︷︷ ︸

↘ as ε↗, 0 for ε=0, Phase Lag

Parameters e1 and e2:

e1 =
1 + ε(

√
3− 1)/2

1 + (
√

3− 1)ε+ (2−
√

3)ε2
A e2 =

ε(1−
√

3)/2

1 + (
√

3− 1)ε+ (2−
√

3)ε2
A
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Analysis of Market Stability (cont’d.)

Case 3: Consumption Model with Price and Consumption Memory
Difference Equation for prices:

λk+1 =
ρ− α
γ + ρ

λk +
α

γ + ρ
λk−1 + 2αdk −

2αρ

γ + ρ
dk−1

Recall assumptions made:
Vk (xk ) = p(xk ) + J∗k = γx2k
h(uk , dk ) = ρ(uk − dk )

2

Stability guaranteed for ε̃ := α/γ < 1/2 + ρ/γ
Faster convergence to equilibrium

0 24 48 72 96
Hours

0.0

2.0

4.0

6.0

8.0

10.0

P
ri

ce
s

/
D

em
an

d

Price vs. Scaled Demand

Prices, ρ = 0.1, ε = 0.48

Prices, ρ = 0, ε = 0.48

Demand ·2α

0 24 48 72 96
Hours

0.0

0.5

1.0

1.5

2.0

2.5

C
on

su
m

pt
io

n
/

D
em

an
d

Consumption vs. Demand

Cons., ρ = 0.1, ε = 0.48

Cons., ρ = 0, ε = 0.48

Demand

Parameters Used

α = 2.04

γ = 4

ρ = 0 or ρ = 0.1

Initial conditions:
λ0 = λ1 = 0
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Summary

Real-Time Pricing of Electricity

RT Pricing relays risk to end-use customers

Implications of RT Pricing not well understood

Our contribution: Analysis of price and consumption stability

Dynamic Consumption Behavior

Previous analysis assumed static utility functions

Our contribution: Derivation of consumption models with price and consumption
memory

Follow-Up Work

Formulation of hedging strategies for load-serving entities to mitigate risk
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Thank You!

Questions?
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