Stability Analysis of Wholesale Electricity Markets under Dynamic Consumption Models and Real-Time Pricing

Datong P. Zhou, Mardavij Roozbehani, Munther A. Dahleh, Claire J. Tomlin

University of California, Berkeley

[datong.zhou, tomlin]@berkeley.edu, [mardavij, dahleh]@mit.edu

May 25, 2017

Electricity Suppliers $i \in S$

- Convex, increasing cost function $c_i(\cdot): \mathbb{R}_+ \mapsto \mathbb{R}_+$
- Given price λ , profit-maximizing production quantity is

$$s_i(\lambda) = \arg \max_{x \in \mathbb{R}_+} \lambda x - c_i(x) = \dot{c}_i^{-1}(\lambda)$$

Consumers $j \in \mathcal{D}$

- Traditionally¹: *Static* utility function for consumption: $u_j = \arg \max_{x \in \mathbb{R}_+} v_j \lambda x$
- Today: Time-varying model with memory $u_j(t) = f(\lambda(t), \lambda(t-1), u_j(t-1))$
 - Solve Economic Dispatch Problem: Maximize social welfare in a network
 - Subject to transmission, capacity, congestion constraints

$$\begin{array}{ll} \underset{\{u_j\}_{j\in\mathcal{D}},\{s_i\}_{i\in\mathcal{S}}}{\text{maximize}} & \sum_{j\in\mathcal{D}} v_j(u_j) - \sum_{i\in\mathcal{S}} c_i(s_i) \\ \text{subject to} & \sum_{j\in\mathcal{D}} u_j = \sum_{i\in\mathcal{S}} s_i \\ \end{array}$$

¹Mardavij Roozbehani, Munther Dahleh, and Sanjoy K. Mitter. "Volatiliy of Power Grids under Real-Time Pricing". In: IEEE Transactions on Power Systems (2012).

Electricity Suppliers $i \in S$

- Convex, increasing cost function $c_i(\cdot):\mathbb{R}_+\mapsto\mathbb{R}_+$
- Given price $\lambda,$ profit-maximizing production quantity is

$$s_i(\lambda) = \arg \max_{x \in \mathbb{R}_+} \lambda x - c_i(x) = \dot{c}_i^{-1}(\lambda)$$

Consumers $j \in \mathcal{D}$

- Traditionally¹: Static utility function for consumption: $u_j = \arg \max_{x \in \mathbb{R}_+} v_j \lambda x$
- Today: Time-varying model with memory $u_j(t) = f(\lambda(t), \lambda(t-1), u_j(t-1))$
- Independent System Operator
 - Solve Economic Dispatch Problem: Maximize social welfare in a network
 - Subject to transmission, capacity, congestion constraints

$$\begin{array}{ll} \underset{\{u_j\}_{j\in\mathcal{D}},\{s_i\}_{i\in\mathcal{S}}}{\text{maximize}} & \sum_{j\in\mathcal{D}} v_j(u_j) - \sum_{i\in\mathcal{S}} c_i(s_i) \\ \text{subject to} & \sum_{j\in\mathcal{D}} u_j = \sum_{i\in\mathcal{S}} s_i \\ \end{array}$$

¹Mardavij Roozbehani, Munther Dahleh, and Sanjoy K. Mitter. "Volatiliy of Power Grids under Real-Time Pricing". In: IEEE Transactions on Power Systems (2012).

Electricity Suppliers $i \in S$

- Convex, increasing cost function $c_i(\cdot):\mathbb{R}_+\mapsto\mathbb{R}_+$
- Given price $\lambda,$ profit-maximizing production quantity is

$$s_i(\lambda) = \arg \max_{x \in \mathbb{R}_+} \lambda x - c_i(x) = \dot{c}_i^{-1}(\lambda)$$

Consumers $j \in \mathcal{D}$

• Traditionally¹: Static utility function for consumption: $u_j = \arg \max_{x \in \mathbb{R}_+} v_j - \lambda x$

• Today: Time-varying model with memory $u_j(t) = f(\lambda(t), \lambda(t-1), u_j(t-1))$ Independent System Operator

- Solve Economic Dispatch Problem: Maximize social welfare in a network
- Subject to transmission, capacity, congestion constraints

$$\begin{array}{ll} \underset{\{u_j\}_{j\in\mathcal{D}},\{s_i\}_{i\in\mathcal{S}}}{\text{maximize}} & \sum_{j\in\mathcal{D}} v_j(u_j) - \sum_{i\in\mathcal{S}} c_i(s_i) \\ \text{subject to} & \sum_{j\in\mathcal{D}} u_j = \sum_{i\in\mathcal{S}} s_i \end{array}$$

¹Mardavij Roozbehani, Munther Dahleh, and Sanjoy K. Mitter. "Volatiliy of Power Grids under Real-Time Pricing". In: IEEE Transactions on Power Systems (2012).

Electricity Suppliers $i \in S$

- Convex, increasing cost function $c_i(\cdot):\mathbb{R}_+\mapsto\mathbb{R}_+$
- Given price $\lambda,$ profit-maximizing production quantity is

$$s_i(\lambda) = \arg \max_{x \in \mathbb{R}_+} \lambda x - c_i(x) = \dot{c}_i^{-1}(\lambda)$$

Consumers $j \in \mathcal{D}$

- Traditionally¹: *Static* utility function for consumption: $u_j = \arg \max_{x \in \mathbb{R}_+} v_j \lambda x$
- Today: Time-varying model with memory $u_j(t) = f(\lambda(t), \lambda(t-1), u_j(t-1))$

Independent System Operator

- Solve Economic Dispatch Problem: Maximize social welfare in a network
- Subject to transmission, capacity, congestion constraints

$$\begin{array}{ll} \underset{\{u_j\}_{j\in\mathcal{D}},\{s_i\}_{i\in\mathcal{S}}}{\text{maximize}} & \sum_{j\in\mathcal{D}} v_j(u_j) - \sum_{i\in\mathcal{S}} c_i(s_i) \\ \text{subject to} & \sum_{j\in\mathcal{D}} u_j = \sum_{i\in\mathcal{S}} s_i \end{array}$$

¹Mardavij Roozbehani, Munther Dahleh, and Sanjoy K. Mitter. "Volatiliy of Power Grids under Real-Time Pricing". In: IEEE Transactions on Power Systems (2012).

Electricity Suppliers $i \in S$

- Convex, increasing cost function $c_i(\cdot):\mathbb{R}_+\mapsto\mathbb{R}_+$
- Given price $\lambda,$ profit-maximizing production quantity is

$$s_i(\lambda) = \arg \max_{x \in \mathbb{R}_+} \lambda x - c_i(x) = \dot{c}_i^{-1}(\lambda)$$

Consumers $j \in \mathcal{D}$

- Traditionally¹: *Static* utility function for consumption: $u_j = \arg \max_{x \in \mathbb{R}_+} v_j \lambda x$
- Today: Time-varying model with memory $u_j(t) = f(\lambda(t), \lambda(t-1), u_j(t-1))$

Independent System Operator

- Solve Economic Dispatch Problem: Maximize social welfare in a network
- Subject to transmission, capacity, congestion constraints

$$\begin{array}{ll} \underset{\{u_j\}_{j\in\mathcal{D}},\{s_i\}_{i\in\mathcal{S}}}{\text{maximize}} & \sum_{j\in\mathcal{D}} v_j(u_j) - \sum_{i\in\mathcal{S}} c_i(s_i) \\ \text{subject to} & \sum_{j\in\mathcal{D}} u_j = \sum_{i\in\mathcal{S}} s_i \end{array}$$

¹Mardavij Roozbehani, Munther Dahleh, and Sanjoy K. Mitter. "Volatiliy of Power Grids under Real-Time Pricing". In: *IEEE Transactions on Power Systems* (2012).

Electricity Suppliers $i \in S$

- Convex, increasing cost function $c_i(\cdot):\mathbb{R}_+\mapsto\mathbb{R}_+$
- Given price $\lambda,$ profit-maximizing production quantity is

$$s_i(\lambda) = \arg \max_{x \in \mathbb{R}_+} \lambda x - c_i(x) = \dot{c}_i^{-1}(\lambda)$$

Consumers $j \in \mathcal{D}$

- Traditionally¹: *Static* utility function for consumption: $u_j = \arg \max_{x \in \mathbb{R}_+} v_j \lambda x$
- Today: Time-varying model with memory $u_j(t) = f(\lambda(t), \lambda(t-1), u_j(t-1))$

Independent System Operator

- Solve Economic Dispatch Problem: Maximize social welfare in a network
- Subject to transmission, capacity, congestion constraints

$$\begin{array}{ll} \underset{\{u_j\}_{j\in\mathcal{D}},\{s_i\}_{i\in\mathcal{S}}}{\text{maximize}} & \sum_{j\in\mathcal{D}} v_j(u_j) - \sum_{i\in\mathcal{S}} c_i(s_i) \\ \text{subject to} & \sum_{j\in\mathcal{D}} u_j = \sum_{i\in\mathcal{S}} s_i \\ \end{array}$$

¹Mardavij Roozbehani, Munther Dahleh, and Sanjoy K. Mitter. "Volatiliy of Power Grids under Real-Time Pricing". In: IEEE Transactions on Power Systems (2012).

Independent System Operator

$$\begin{array}{ll} \underset{\{u_j\}_{j\in\mathcal{D}},\{s_i\}_{i\in\mathcal{S}}}{\text{maximize}} & \sum_{j\in\mathcal{D}} v_j(u_j) - \sum_{i\in\mathcal{S}} c_i(s_i) \\ \text{subject to} & \sum_{j\in\mathcal{D}} u_j = \sum_{i\in\mathcal{S}} s_i \end{array}$$

 $^{^{2}{\}rm Fabio}{\rm \ Canova.\ Methods\ for\ Applied\ Macroeconomic\ Research.\ \ Princeton\ University\ Press,\ 2007.}$

Independent System Operator

 $\begin{array}{ll} \underset{\{u_j\}_{j\in\mathcal{D}},\{s_i\}_{i\in\mathcal{S}}}{\text{maximize}} & \sum_{j\in\mathcal{D}} \mathsf{v}_j(u_j) - \sum_{i\in\mathcal{S}} \mathsf{c}_i(s_i) \\ \text{subject to} & \sum_{j\in\mathcal{D}} u_j = \sum_{i\in\mathcal{S}} s_i \end{array}$

• Consumers do not announce $\{v_j\}_{j\in\mathcal{D}} \Rightarrow \mathsf{ISO}$ estimates consumption \hat{u}_j

²Fabio Canova. Methods for Applied Macroeconomic Research. Princeton University Press, 2007.

Independent System Operator

$$\begin{array}{ll} \underset{\{u_j\}_{j\in\mathcal{D}},\{s_i\}_{i\in\mathcal{S}}}{\text{maximize}} & \sum_{j\in\mathcal{D}} v_j(u_j) - \sum_{i\in\mathcal{S}} c_i(s_i) \\ \text{subject to} & \sum_{j\in\mathcal{D}} u_j = \sum_{i\in\mathcal{S}} s_i \end{array}$$

- Consumers do not announce $\{v_j\}_{j\in\mathcal{D}}\Rightarrow$ ISO estimates consumption \hat{u}_j
- Representative Agent Model²: Aggregation of single users / consumers \Rightarrow Aggregate demand *u* and supply *s*

² Fabio Canova. Methods for Applied Macroeconomic Research. Princeton University Press, 2007.

Independent System Operator

$$\begin{array}{ll} \underset{\{u_j\}_{j\in\mathcal{D}},\{s_i\}_{i\in\mathcal{S}}}{\text{maximize}} & \sum_{j\in\mathcal{D}} v_j(u_j) - \sum_{i\in\mathcal{S}} c_i(s_i) \\ \text{subject to} & \sum_{j\in\mathcal{D}} u_j = \sum_{i\in\mathcal{S}} s_i \end{array}$$

- Consumers do not announce $\{v_j\}_{j\in\mathcal{D}} \Rightarrow \mathsf{ISO}$ estimates consumption \hat{u}_j
- Representative Agent Model²: Aggregation of single users / consumers \Rightarrow Aggregate demand *u* and supply *s*
- Optimization problem is trivially solved: $\min_s c(s) \ s.t. \ \hat{u} = s \longrightarrow c(\hat{u})$

² Fabio Canova. Methods for Applied Macroeconomic Research. Princeton University Press, 2007.

Independent System Operator

$$\begin{array}{ll} \underset{\{u_j\}_{j\in\mathcal{D}},\{s_i\}_{i\in\mathcal{S}}}{\text{maximize}} & \sum_{j\in\mathcal{D}} v_j(u_j) - \sum_{i\in\mathcal{S}} c_i(s_i) \\ \text{subject to} & \sum_{j\in\mathcal{D}} u_j = \sum_{i\in\mathcal{S}} s_i \end{array}$$

- Consumers do not announce $\{v_j\}_{j\in\mathcal{D}} \Rightarrow \mathsf{ISO}$ estimates consumption \hat{u}_j
- Representative Agent Model²: Aggregation of single users / consumers \Rightarrow Aggregate demand *u* and supply *s*
- Optimization problem is trivially solved: $\min_s c(s) \ s.t. \ \hat{u} = s \longrightarrow c(\hat{u})$

Ex-Ante Pricing

² Fabio Canova. Methods for Applied Macroeconomic Research. Princeton University Press, 2007.

Independent System Operator

$$\begin{array}{ll} \underset{\{u_j\}_{j\in\mathcal{D}},\{s_i\}_{i\in\mathcal{S}}}{\text{maximize}} & \sum_{j\in\mathcal{D}} v_j(u_j) - \sum_{i\in\mathcal{S}} c_i(s_i) \\ \text{subject to} & \sum_{j\in\mathcal{D}} u_j = \sum_{i\in\mathcal{S}} s_i \end{array}$$

- Consumers do not announce $\{v_j\}_{j\in\mathcal{D}} \Rightarrow \mathsf{ISO}$ estimates consumption \hat{u}_j
- Representative Agent Model²: Aggregation of single users / consumers \Rightarrow Aggregate demand *u* and supply *s*
- Optimization problem is trivially solved: $\min_s c(s) \ s.t. \ \hat{u} = s \longrightarrow c(\hat{u})$

Ex-Ante Pricing

• At time k, u_k is observed

²Fabio Canova. Methods for Applied Macroeconomic Research. Princeton University Press, 2007.

Independent System Operator

$$\begin{array}{ll} \underset{\{u_j\}_{j\in\mathcal{D}},\{s_i\}_{i\in\mathcal{S}}}{\text{maximize}} & \sum_{j\in\mathcal{D}} v_j(u_j) - \sum_{i\in\mathcal{S}} c_i(s_i) \\ \text{subject to} & \sum_{j\in\mathcal{D}} u_j = \sum_{i\in\mathcal{S}} s_i \end{array}$$

- Consumers do not announce $\{v_j\}_{j\in\mathcal{D}} \Rightarrow \mathsf{ISO}$ estimates consumption \hat{u}_j
- Representative Agent Model²: Aggregation of single users / consumers \Rightarrow Aggregate demand *u* and supply *s*
- Optimization problem is trivially solved: $\min_s c(s) \ s.t. \ \hat{u} = s \longrightarrow c(\hat{u})$

Ex-Ante Pricing

- At time k, u_k is observed
- ISO predicts $\hat{u}_{k+1} = u_k$

$$u \xrightarrow{\hat{u}_{k+1} = u_k} \lambda_{k+1} = \dot{c}(\hat{u}_{k+1})$$

²Fabio Canova. Methods for Applied Macroeconomic Research. Princeton University Press, 2007.

Independent System Operator

$$\begin{array}{ll} \underset{\{u_j\}_{j\in\mathcal{D}},\{s_i\}_{i\in\mathcal{S}}}{\text{maximize}} & \sum_{j\in\mathcal{D}} v_j(u_j) - \sum_{i\in\mathcal{S}} c_i(s_i) \\ \text{subject to} & \sum_{j\in\mathcal{D}} u_j = \sum_{i\in\mathcal{S}} s_i \end{array}$$

• Consumers do not announce $\{v_j\}_{j\in\mathcal{D}}$ \Rightarrow ISO estimates consumption \hat{u}_j

- Representative Agent Model²: Aggregation of single users / consumers \Rightarrow Aggregate demand *u* and supply *s*
- Optimization problem is trivially solved: $\min_s c(s) \ s.t. \ \hat{u} = s \longrightarrow c(\hat{u})$

Ex-Ante Pricing

- At time k, u_k is observed
- ISO predicts $\hat{u}_{k+1} = u_k$
- ISO sets price $\lambda_{k+1} = \dot{c}(\hat{u}_{k-1})$, announces λ_{k+1} to producer

 $u \xrightarrow{\hat{u}_{k+1} = u_k} \overline{\lambda_{k+1} = \dot{c}(\hat{u}_{k+1})}$

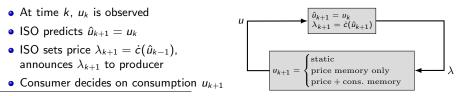
² Fabio Canova. Methods for Applied Macroeconomic Research. Princeton University Press, 2007.

Independent System Operator

$$\begin{array}{ll} \underset{\{u_j\}_{j\in\mathcal{D}},\{s_i\}_{i\in\mathcal{S}}}{\text{maximize}} & \sum_{j\in\mathcal{D}} v_j(u_j) - \sum_{i\in\mathcal{S}} c_i(s_i) \\ \text{subject to} & \sum_{j\in\mathcal{D}} u_j = \sum_{i\in\mathcal{S}} s_i \end{array}$$

- Consumers do not announce $\{v_j\}_{j\in\mathcal{D}}$ \Rightarrow ISO estimates consumption \hat{u}_j
- Representative Agent Model²: Aggregation of single users / consumers \Rightarrow Aggregate demand *u* and supply *s*
- Optimization problem is trivially solved: $\min_s c(s) \ s.t. \ \hat{u} = s \longrightarrow c(\hat{u})$

Ex-Ante Pricing



² Fabio Canova. Methods for Applied Macroeconomic Research. Princeton University Press, 2007.

Consumer's Inventory Problem³

$$\begin{array}{ll} \underset{u_{0},\ldots,u_{n-1}}{\text{minimize}} & \mathbb{E}_{\lambda_{1},\ldots,\lambda_{n-1}} \left[\sum_{k=0}^{n-1} \lambda_{k} u_{k} + p(x_{k+1}) + h(u_{k},d_{k}) \right] \\ \text{subject to} & x_{k+1} = x_{k} + u_{k} - d_{k} \\ & x_{k} \leq 0 \\ & x_{n} = 0 \end{array}$$

Consumer's Inventory Problem³

• Minimize cost over *n* slotted intervals $k = 0, \ldots, n-1$

$$\begin{array}{ll} \underset{u_{0},\ldots,u_{n-1}}{\text{minimize}} & \mathbb{E}_{\lambda_{1},\ldots,\lambda_{n-1}} \left[\sum_{k=0}^{n-1} \lambda_{k} u_{k} + p(x_{k+1}) + h(u_{k},d_{k}) \right] \\ \text{subject to} & x_{k+1} = x_{k} + u_{k} - d_{k} \\ & x_{k} \leq 0 \\ & x_{n} = 0 \end{array}$$

Consumer's Inventory Problem³

- Minimize cost over *n* slotted intervals $k = 0, \ldots, n-1$
- Per-unit price of electricity: λ_k

$$\begin{array}{ll} \underset{u_{0},\ldots,u_{n-1}}{\text{minimize}} & \mathbb{E}_{\lambda_{1},\ldots,\lambda_{n-1}} \left[\sum_{k=0}^{n-1} \lambda_{k} u_{k} + p(x_{k+1}) + h(u_{k},d_{k}) \right] \\ \text{subject to} & x_{k+1} = x_{k} + u_{k} - d_{k} \\ & x_{k} \leq 0 \\ & x_{n} = 0 \end{array}$$

Consumer's Inventory Problem³

- Minimize cost over *n* slotted intervals $k = 0, \ldots, n-1$
- Per-unit price of electricity: λ_k
- A-priori known demand dk, shiftable / elastic

$$\begin{array}{ll} \underset{u_{0},\ldots,u_{n-1}}{\text{minimize}} & \mathbb{E}_{\lambda_{1},\ldots,\lambda_{n-1}} \left[\sum_{k=0}^{n-1} \lambda_{k} u_{k} + p(x_{k+1}) + h(u_{k},d_{k}) \right] \\ \text{subject to} & x_{k+1} = x_{k} + u_{k} - d_{k} \\ & x_{k} \leq 0 \\ & x_{n} = 0 \end{array}$$

Consumer's Inventory Problem³

- Minimize cost over *n* slotted intervals $k = 0, \ldots, n-1$
- Per-unit price of electricity: λ_k
- A-priori known demand d_k, shiftable / elastic
- Backlog $x_k \leq 0$: Unsatisfied demand

$$\begin{array}{ll} \underset{u_{0},\ldots,u_{n-1}}{\text{minimize}} & \mathbb{E}_{\lambda_{1},\ldots,\lambda_{n-1}} \left[\sum_{k=0}^{n-1} \lambda_{k} u_{k} + p(x_{k+1}) + h(u_{k},d_{k}) \right] \\ \text{subject to} & x_{k+1} = x_{k} + u_{k} - d_{k} \\ & x_{k} \leq 0 \\ & x_{n} = 0 \end{array}$$

Consumer's Inventory Problem³

- Minimize cost over *n* slotted intervals $k = 0, \ldots, n-1$
- Per-unit price of electricity: λ_k
- A-priori known demand d_k, shiftable / elastic
- Backlog $x_k \leq 0$: Unsatisfied demand
- Actual consumption: *u_k*

$$\begin{array}{ll} \underset{u_0,\ldots,u_{n-1}}{\text{minimize}} & \mathbb{E}_{\lambda_1,\ldots,\lambda_{n-1}} \left[\sum_{k=0}^{n-1} \lambda_k u_k + p(x_{k+1}) + h(u_k,d_k) \right] \\ \text{subject to} & x_{k+1} = x_k + u_k - d_k \\ & x_k \leq 0 \\ & x_n = 0 \end{array}$$

Consumer's Inventory Problem³

- Minimize cost over *n* slotted intervals $k = 0, \ldots, n-1$
- Per-unit price of electricity: λ_k
- A-priori known demand d_k, shiftable / elastic
- Backlog $x_k \leq 0$: Unsatisfied demand
- Actual consumption: u_k
- Backlog disutility: $p(\cdot) : \mathbb{R}_{-} \to \mathbb{R}_{+}$

$$\begin{array}{ll} \underset{u_{0},\ldots,u_{n-1}}{\text{minimize}} & \mathbb{E}_{\lambda_{1},\ldots,\lambda_{n-1}} \left[\sum_{k=0}^{n-1} \lambda_{k} u_{k} + p(x_{k+1}) + h(u_{k},d_{k}) \right] \\ \text{subject to} & x_{k+1} = x_{k} + u_{k} - d_{k} \\ & x_{k} \leq 0 \\ & x_{n} = 0 \end{array}$$

Consumer's Inventory Problem³

- Minimize cost over *n* slotted intervals $k = 0, \ldots, n-1$
- Per-unit price of electricity: λ_k
- A-priori known demand d_k, shiftable / elastic
- Backlog $x_k \leq 0$: Unsatisfied demand
- Actual consumption: u_k
- Backlog disutility: $p(\cdot): \mathbb{R}_{-} \to \mathbb{R}_{+}$
- Cost for consumption deviation: $h(\cdot, \cdot) : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$

$$\begin{array}{ll} \underset{u_{0},\ldots,u_{n-1}}{\text{minimize}} & \mathbb{E}_{\lambda_{1},\ldots,\lambda_{n-1}} \left[\sum_{k=0}^{n-1} \lambda_{k} u_{k} + p(x_{k+1}) + h(u_{k},d_{k}) \right] \\ \text{subject to} & x_{k+1} = x_{k} + u_{k} - d_{k} \\ & x_{k} \leq 0 \\ & x_{n} = 0 \end{array}$$

³P. H. Zipkin. Foundations of Inventory Management. McGraw-Hill/Irwin, 2000.

Consumer's Inventory Problem³

- Minimize cost over *n* slotted intervals $k = 0, \ldots, n-1$
- Per-unit price of electricity: λ_k
- A-priori known demand d_k, shiftable / elastic
- Backlog $x_k \leq 0$: Unsatisfied demand
- Actual consumption: u_k
- Backlog disutility: $p(\cdot): \mathbb{R}_{-} \to \mathbb{R}_{+}$
- Cost for consumption deviation: $h(\cdot, \cdot) : \mathbb{R}_+ imes \mathbb{R}_+ o \mathbb{R}_+$

$$\begin{array}{ll} \underset{u_{0},\ldots,u_{n-1}}{\text{minimize}} & \mathbb{E}_{\lambda_{1},\ldots,\lambda_{n-1}} \left[\sum_{k=0}^{n-1} \lambda_{k} u_{k} + p(x_{k+1}) + h(u_{k},d_{k}) \right] \\ \text{subject to} & x_{k+1} = x_{k} + u_{k} - d_{k} \\ & x_{k} \leq 0 \\ & x_{n} = 0 \end{array}$$

Assumption

• h and p convex in first argument

Bellman Equation and Dynamic Programming

$$J_{k}^{*} = \min_{u_{k}} \lambda_{k} u_{k} + p(x_{k+1}) + h(u_{k}, d_{k}) + \mathbb{E}_{\lambda_{k+1}, \dots, \lambda_{n-1}} [J_{k+1}^{*}].$$

 \Rightarrow Solution u_k^* is function of previous prices and consumption decisions Case $h\equiv 0:$

$$u_{n-k}^* = d_{n-k} - \dot{p}^{-1} \left(\frac{\lambda_{n-k} - \lambda_{n-k-1}}{k-1} \right), \quad k = 2, \dots, n$$

Case $h(u_k, d_k) = \rho(u_k - d_k)^2$:

$$u_k^* = rac{d_k + ilde{V}(\lambda_{k-1} - \lambda_k + 2
ho(d_k - d_{k-1} + u_{k-1}))}{2
ho ilde{V} + 1}, \quad k = 0, \dots, n-2$$

Assumptions

- $\mathbb{E}[\lambda_{k+1}] = \lambda_k, \quad k = 0, \dots, n-2$
- p(·) is a quadratic function for h ≠ 0 ⇒ V_k := p(x_k) + J_k^{*} is quadratic ⇒ Ṽ := V⁻¹(x) is linear

Bellman Equation and Dynamic Programming

$$J_{k}^{*} = \min_{u_{k}} \lambda_{k} u_{k} + p(x_{k+1}) + h(u_{k}, d_{k}) + \mathbb{E}_{\lambda_{k+1}, \dots, \lambda_{n-1}} [J_{k+1}^{*}].$$

 \Rightarrow Solution u_k^* is function of previous prices and consumption decisions Case $h \equiv 0$:

$$u_{n-k}^* = d_{n-k} - \dot{p}^{-1} \left(\frac{\lambda_{n-k} - \lambda_{n-k-1}}{k-1} \right), \quad k = 2, \dots, n$$

Case $h(u_k, d_k) = \rho(u_k - d_k)^2$:

$$u_k^* = rac{d_k + ilde{V}(\lambda_{k-1} - \lambda_k + 2
ho(d_k - d_{k-1} + u_{k-1}))}{2
ho ilde{V} + 1}, \quad k = 0, \dots, n-2$$

Assumptions

- $\mathbb{E}[\lambda_{k+1}] = \lambda_k, \quad k = 0, \dots, n-2$
- $p(\cdot)$ is a quadratic function for $h \neq 0 \Rightarrow V_k := p(x_k) + J_k^*$ is quadratic $\Rightarrow \tilde{V} := \dot{V}^{-1}(x)$ is linear

Bellman Equation and Dynamic Programming

$$J_{k}^{*} = \min_{u_{k}} \lambda_{k} u_{k} + p(x_{k+1}) + h(u_{k}, d_{k}) + \mathbb{E}_{\lambda_{k+1}, \dots, \lambda_{n-1}} [J_{k+1}^{*}].$$

 \Rightarrow Solution u_k^* is function of previous prices and consumption decisions Case $h \equiv 0$:

$$u_{n-k}^* = d_{n-k} - \dot{p}^{-1} \left(\frac{\lambda_{n-k} - \lambda_{n-k-1}}{k-1} \right), \quad k = 2, \dots, n$$

Case $h(u_k, d_k) = \rho(u_k - d_k)^2$:

$$u_{k}^{*} = \frac{d_{k} + \tilde{V}(\lambda_{k-1} - \lambda_{k} + 2\rho(d_{k} - d_{k-1} + u_{k-1}))}{2\rho\tilde{V} + 1}, \quad k = 0, \dots, n-2$$

Assumptions

•
$$\mathbb{E}[\lambda_{k+1}] = \lambda_k, \quad k = 0, \dots, n-2$$

• $p(\cdot)$ is a quadratic function for $h \neq 0 \Rightarrow V_k := p(x_k) + J_k^*$ is quadratic $\Rightarrow \tilde{V} := \dot{V}^{-1}(x)$ is linear

Bellman Equation and Dynamic Programming

$$J_{k}^{*} = \min_{u_{k}} \lambda_{k} u_{k} + p(x_{k+1}) + h(u_{k}, d_{k}) + \mathbb{E}_{\lambda_{k+1}, \dots, \lambda_{n-1}} [J_{k+1}^{*}].$$

 \Rightarrow Solution u_k^* is function of previous prices and consumption decisions Case $h \equiv 0$:

$$u_{n-k}^* = d_{n-k} - \dot{p}^{-1} \left(\frac{\lambda_{n-k} - \lambda_{n-k-1}}{k-1} \right), \quad k = 2, \dots, n$$

Case $h(u_k, d_k) = \rho(u_k - d_k)^2$:

$$u_k^* = \frac{d_k + \tilde{V}(\lambda_{k-1} - \lambda_k + 2\rho(d_k - d_{k-1} + u_{k-1}))}{2\rho\tilde{V} + 1}, \quad k = 0, \dots, n-2$$

Assumptions

•
$$\mathbb{E}[\lambda_{k+1}] = \lambda_k, \quad k = 0, \dots, n-2$$

• $p(\cdot)$ is a quadratic function for $h \neq 0 \Rightarrow V_k := p(x_k) + J_k^*$ is quadratic $\Rightarrow \tilde{V} := \dot{V}^{-1}(x)$ is linear

Bellman Equation and Dynamic Programming

$$J_{k}^{*} = \min_{u_{k}} \lambda_{k} u_{k} + p(x_{k+1}) + h(u_{k}, d_{k}) + \mathbb{E}_{\lambda_{k+1}, \dots, \lambda_{n-1}} [J_{k+1}^{*}].$$

 \Rightarrow Solution u_k^* is function of previous prices and consumption decisions Case $h \equiv 0$:

$$u_{n-k}^* = d_{n-k} - \dot{p}^{-1} \left(\frac{\lambda_{n-k} - \lambda_{n-k-1}}{k-1} \right), \quad k = 2, \dots, n$$

Case $h(u_k, d_k) = \rho(u_k - d_k)^2$:

$$u_k^* = rac{d_k + ilde{V}(\lambda_{k-1} - \lambda_k + 2
ho(d_k - d_{k-1} + u_{k-1}))}{2
ho ilde{V} + 1}, \quad k = 0, \dots, n-2$$

Assumptions

- $\mathbb{E}[\lambda_{k+1}] = \lambda_k, \quad k = 0, \dots, n-2$
- $p(\cdot)$ is a quadratic function for $h \neq 0 \Rightarrow V_k := p(x_k) + J_k^*$ is quadratic $\Rightarrow \tilde{V} := \dot{V}^{-1}(x)$ is linear

Case 1: Static Consumption Model

• Utility and cost functions of consumer and producer are constant and time-invariant⁴

Case 2: Consumption Model with Price Memory

$$\lambda_{k+1}=\dot{c}(\hat{u}_{k+1})=\dot{c}(u_k)=\dot{c}\left(\dot{
ho}^{-1}(-\lambda_k)-\dot{
ho}^{-1}(-\lambda_{k-1})+d_k
ight)$$

• For simulation purposes, model *p* and *c* as quadratic functions:

$$c(x) = \alpha x^2 \qquad p(x) = \beta x^2$$

$$\lambda_{k} = -\frac{\alpha}{\beta}\lambda_{k-1} + \frac{\alpha}{\beta}\lambda_{k-2} + 2\alpha d_{k}$$
$$u_{k} = \frac{1}{2\beta}(\lambda_{k-1} - \lambda_{k}) + d_{k}$$

- System of linear, non-homogeneous difference equations
- Stability guaranteed for 0 $\leq \varepsilon < 1/2$, where $\varepsilon := lpha / eta$

⁴Mardavij Roozbehani, Munther Dahleh, and Sanjoy K. Mitter. "Volatiliy of Power Grids under Real-Time Pricing". In: IEEE Transactions on Power Systems (2012).

Case 1: Static Consumption Model

• Utility and cost functions of consumer and producer are constant and time-invariant⁴

Case 2: Consumption Model with Price Memory

$$\lambda_{k+1} = \dot{c}(\hat{u}_{k+1}) = \dot{c}(u_k) = \dot{c}\left(\dot{
ho}^{-1}(-\lambda_k) - \dot{
ho}^{-1}(-\lambda_{k-1}) + d_k
ight)$$

• For simulation purposes, model *p* and *c* as quadratic functions:

$$c(x) = \alpha x^2 \qquad p(x) = \beta x^2$$

$$\lambda_{k} = -\frac{\alpha}{\beta}\lambda_{k-1} + \frac{\alpha}{\beta}\lambda_{k-2} + 2\alpha d_{k}$$
$$u_{k} = \frac{1}{2\beta}(\lambda_{k-1} - \lambda_{k}) + d_{k}$$

- System of linear, non-homogeneous difference equations
- Stability guaranteed for 0 $\leq arepsilon < 1/2$, where arepsilon := lpha / eta

⁴Mardavij Roozbehani, Munther Dahleh, and Sanjoy K. Mitter. "Volatiliy of Power Grids under Real-Time Pricing". In: IEEE Transactions on Power Systems (2012).

Case 1: Static Consumption Model

• Utility and cost functions of consumer and producer are constant and time-invariant⁴

Case 2: Consumption Model with Price Memory

$$\lambda_{k+1} = \dot{c}(\hat{u}_{k+1}) = \dot{c}(u_k) = \dot{c}\left(\dot{p}^{-1}(-\lambda_k) - \dot{p}^{-1}(-\lambda_{k-1}) + d_k
ight)$$

• For simulation purposes, model *p* and *c* as quadratic functions:

$$c(x) = \alpha x^2$$
 $p(x) = \beta x^2$

$$\lambda_{k} = -\frac{\alpha}{\beta}\lambda_{k-1} + \frac{\alpha}{\beta}\lambda_{k-2} + 2\alpha d_{k}$$
$$u_{k} = \frac{1}{2\beta}(\lambda_{k-1} - \lambda_{k}) + d_{k}$$

- System of linear, non-homogeneous difference equations
- Stability guaranteed for 0 $\leq \varepsilon < 1/2$, where $\varepsilon := \alpha/\beta$

⁴Mardavij Roozbehani, Munther Dahleh, and Sanjoy K. Mitter. "Volatiliy of Power Grids under Real-Time Pricing". In: *IEEE Transactions on Power Systems* (2012).

Case 1: Static Consumption Model

• Utility and cost functions of consumer and producer are constant and time-invariant⁴

Case 2: Consumption Model with Price Memory

$$\lambda_{k+1} = \dot{c}(\hat{u}_{k+1}) = \dot{c}(u_k) = \dot{c}\left(\dot{
ho}^{-1}(-\lambda_k) - \dot{
ho}^{-1}(-\lambda_{k-1}) + d_k
ight)$$

• For simulation purposes, model *p* and *c* as quadratic functions:

$$c(x) = \alpha x^2 \qquad p(x) = \beta x^2$$

$$egin{aligned} \lambda_k &= -rac{lpha}{eta}\lambda_{k-1} + rac{lpha}{eta}\lambda_{k-2} + 2lpha d_k \ u_k &= rac{1}{2eta}(\lambda_{k-1} - \lambda_k) + d_k \end{aligned}$$

- System of linear, non-homogeneous difference equations
- Stability guaranteed for 0 $\leq arepsilon < 1/2$, where arepsilon := lpha / eta

⁴Mardavij Roozbehani, Munther Dahleh, and Sanjoy K. Mitter. "Volatiliy of Power Grids under Real-Time Pricing". In: IEEE Transactions on Power Systems (2012).

Case 1: Static Consumption Model

• Utility and cost functions of consumer and producer are constant and time-invariant⁴

Case 2: Consumption Model with Price Memory

$$\lambda_{k+1} = \dot{c}(\hat{u}_{k+1}) = \dot{c}(u_k) = \dot{c}\left(\dot{
ho}^{-1}(-\lambda_k) - \dot{
ho}^{-1}(-\lambda_{k-1}) + d_k
ight)$$

• For simulation purposes, model *p* and *c* as quadratic functions:

$$c(x) = \alpha x^2 \qquad p(x) = \beta x^2$$

$$egin{aligned} \lambda_k &= -rac{lpha}{eta}\lambda_{k-1} + rac{lpha}{eta}\lambda_{k-2} + 2lpha d_k \ u_k &= rac{1}{2eta}(\lambda_{k-1} - \lambda_k) + d_k \end{aligned}$$

- System of linear, non-homogeneous difference equations
- Stability guaranteed for 0 $\leq \varepsilon <$ 1/2, where $\varepsilon := \alpha / \beta$

⁴Mardavij Roozbehani, Munther Dahleh, and Sanjoy K. Mitter. "Volatiliy of Power Grids under Real-Time Pricing". In: IEEE Transactions on Power Systems (2012).

Analysis of Market Stability (cont'd.)

Case 2: Consumption Model with Price Memory

• Price and consumption dynamics:

$$\lambda_{k} = -\frac{\alpha}{\beta}\lambda_{k-1} + \frac{\alpha}{\beta}\lambda_{k-2} + 2\alpha d_{k}$$
$$u_{k} = \frac{1}{2\beta}(\lambda_{k-1} - \lambda_{k}) + d_{k}$$

 \bullet Stability guaranteed for 0 $\leq \varepsilon <$ 1/2, where $\varepsilon := \alpha / \beta$

Case 2: Consumption Model with Price Memory

• Price and consumption dynamics:

$$egin{aligned} \lambda_k &= -rac{lpha}{eta}\lambda_{k-1} + rac{lpha}{eta}\lambda_{k-2} + 2lpha d_k \ u_k &= rac{1}{2eta}(\lambda_{k-1} - \lambda_k) + d_k \end{aligned}$$

 \bullet Stability guaranteed for 0 $\leq \varepsilon <$ 1/2, where $\varepsilon := \alpha/\beta$

Case 2: Consumption Model with Price Memory

• Price and consumption dynamics:

$$egin{aligned} \lambda_k &= -rac{lpha}{eta}\lambda_{k-1} + rac{lpha}{eta}\lambda_{k-2} + 2lpha d_k \ u_k &= rac{1}{2eta}(\lambda_{k-1} - \lambda_k) + d_k \end{aligned}$$

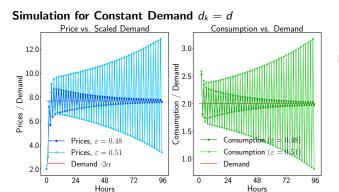
• Stability guaranteed for 0 $\leq \varepsilon <$ 1/2, where $\varepsilon := \alpha/\beta$

Case 2: Consumption Model with Price Memory

• Price and consumption dynamics:

$$egin{aligned} \lambda_k &= -rac{lpha}{eta}\lambda_{k-1} + rac{lpha}{eta}\lambda_{k-2} + 2lpha d_k \ u_k &= rac{1}{2eta}(\lambda_{k-1} - \lambda_k) + d_k \end{aligned}$$

• Stability guaranteed for 0 $\leq \varepsilon < 1/2$, where $\varepsilon := \alpha/\beta$



Parameters Used:

- *d* = 2
- β = 4
- $\alpha = 1.92$ or $\alpha = 2.04$
- Initial conditions: $\lambda_0 = \lambda_1 = 3$

Case 2: Consumption Model with Price Memory

• Price and consumption dynamics:

$$egin{aligned} \lambda_k &= -rac{lpha}{eta}\lambda_{k-1} + rac{lpha}{eta}\lambda_{k-2} + 2lpha d_k \ u_k &= rac{1}{2eta}(\lambda_{k-1} - \lambda_k) + d_k \end{aligned}$$

• Stability guaranteed for 0 $\leq \varepsilon <$ 1/2, where $\varepsilon := \alpha/\beta$

Variable Demand Model

• Sinusoid of period 12 hours⁵: $2\alpha d_k = \mu + A \sin((k-5)\pi/6)$

⁵D. Zhou, M. Balandat, and C. Tomlin. "Residential Demand Response Targeting Using Machine Learning with Observational Data". In: 55th IEEE Conference on Decision and Control (2016).

Case 2: Consumption Model with Price Memory

• Price and consumption dynamics:

$$egin{aligned} \lambda_k &= -rac{lpha}{eta}\lambda_{k-1} + rac{lpha}{eta}\lambda_{k-2} + 2lpha d_k \ u_k &= rac{1}{2eta}(\lambda_{k-1} - \lambda_k) + d_k \end{aligned}$$

• Stability guaranteed for 0 $\leq \varepsilon <$ 1/2, where $\varepsilon := \alpha/\beta$

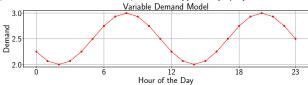
Variable Demand Model

• Sinusoid of period 12 hours⁵: $2\alpha d_k = \mu + A \sin ((k-5)\pi/6)$

⁵D. Zhou, M. Balandat, and C. Tomlin. "Residential Demand Response Targeting Using Machine Learning with Observational Data". In: 55th IEEE Conference on Decision and Control (2016).

Variable Demand Model

• Sinusoid of period 12 hours: $2\alpha d_k = \mu + A\sin((k-5)\pi/6)$



• Price dynamics:

• For 0

$$\lambda_k = c_1 x_1^k + c_2 x_2^k + \mu + e_1 \sin((k-5)\pi/6) + e_2 \cos((k-5)\pi/6)$$

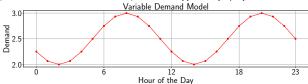
 $\leq \varepsilon < 1/2$:

$$\lambda_{k} \xrightarrow{k \to \infty} \mu + \underbrace{\sqrt{e_{1}^{2} + e_{2}^{2}}}_{\searrow \text{ as } \varepsilon \nearrow, \text{ "Damping"}} \cdot \underbrace{\sin\left(\frac{(k-5)\pi}{6} + \frac{\pi}{3} + \arctan\left(\frac{e_{2} - \sqrt{3}e_{1}}{\sqrt{3}e_{2} + e_{1}}\right)\right)}_{\searrow \text{ as } \varepsilon \nearrow, \text{ 0 for } \varepsilon = 0, \text{ Phase Lag}}$$

$$e_{1} = \frac{1 + \varepsilon(\sqrt{3} - 1)/2}{1 + (\sqrt{3} - 1)\varepsilon + (2 - \sqrt{3})\varepsilon^{2}}A \qquad e_{2} = \frac{\varepsilon(1 - \sqrt{3})/2}{1 + (\sqrt{3} - 1)\varepsilon + (2 - \sqrt{3})\varepsilon^{2}}A$$

Variable Demand Model

• Sinusoid of period 12 hours: $2\alpha d_k = \mu + A \sin((k-5)\pi/6)$



• Price dynamics:

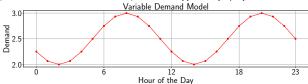
 $\lambda_k = c_1 x_1^k + c_2 x_2^k + \mu + e_1 \sin((k-5)\pi/6) + e_2 \cos((k-5)\pi/6)$ • For $0 < \varepsilon < 1/2$:

$$\lambda_k \xrightarrow{k \to \infty} \mu + \underbrace{\sqrt{e_1^2 + e_2^2}}_{\searrow \text{ as } \varepsilon \nearrow, \text{ "Damping"}} \cdot \underbrace{\sin\left(\frac{(k-5)\pi}{6} + \frac{\pi}{3} + \arctan\left(\frac{e_2 - \sqrt{3}e_1}{\sqrt{3}e_2 + e_1}\right)\right)}_{\searrow \text{ as } \varepsilon \nearrow, 0 \text{ for } \varepsilon = 0, \text{ Phase Lag}}$$

$$e_{1} = \frac{1 + \varepsilon(\sqrt{3} - 1)/2}{1 + (\sqrt{3} - 1)\varepsilon + (2 - \sqrt{3})\varepsilon^{2}}A \qquad e_{2} = \frac{\varepsilon(1 - \sqrt{3})/2}{1 + (\sqrt{3} - 1)\varepsilon + (2 - \sqrt{3})\varepsilon^{2}}A$$

Variable Demand Model

• Sinusoid of period 12 hours: $2\alpha d_k = \mu + A \sin((k-5)\pi/6)$



• Price dynamics:

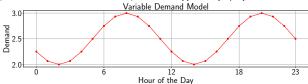
$$\lambda_k = c_1 x_1^k + c_2 x_2^k + \mu + e_1 \sin\left((k-5)\pi/6\right) + e_2 \cos\left((k-5)\pi/6\right)$$
• For $0 < \varepsilon < 1/2$:

$$\lambda_{k} \xrightarrow{k \to \infty} \mu + \underbrace{\sqrt{e_{1}^{2} + e_{2}^{2}}}_{\searrow \text{ as } \varepsilon \nearrow, \text{ "Damping"}} \cdot \underbrace{\sin\left(\frac{(k-5)\pi}{6} + \frac{\pi}{3} + \arctan\left(\frac{e_{2} - \sqrt{3}e_{1}}{\sqrt{3}e_{2} + e_{1}}\right)\right)}_{\searrow \text{ as } \varepsilon \nearrow, 0 \text{ for } \varepsilon = 0, \text{ Phase Lag}}$$

$$e_1 = \frac{1 + \varepsilon(\sqrt{3} - 1)/2}{1 + (\sqrt{3} - 1)\varepsilon + (2 - \sqrt{3})\varepsilon^2} A \qquad e_2 = \frac{\varepsilon(1 - \sqrt{3})/2}{1 + (\sqrt{3} - 1)\varepsilon + (2 - \sqrt{3})\varepsilon^2} A$$

Variable Demand Model

• Sinusoid of period 12 hours: $2\alpha d_k = \mu + A \sin((k-5)\pi/6)$



• Price dynamics:

$$\lambda_k = c_1 x_1^k + c_2 x_2^k + \mu + e_1 \sin((k-5)\pi/6) + e_2 \cos((k-5)\pi/6)$$

• For $0 \le \varepsilon < 1/2$:

$$\lambda_{k} \xrightarrow{k \to \infty} \mu + \underbrace{\sqrt{e_{1}^{2} + e_{2}^{2}}}_{\searrow \text{ as } \varepsilon \nearrow, \text{ "Damping"}} \cdot \underbrace{\sin\left(\frac{(k-5)\pi}{6} + \frac{\pi}{3} + \arctan\left(\frac{e_{2} - \sqrt{3}e_{1}}{\sqrt{3}e_{2} + e_{1}}\right)\right)}_{\searrow \text{ as } \varepsilon \nearrow, 0 \text{ for } \varepsilon = 0, \text{ Phase Lag}}$$

$$e_1=\frac{1+\varepsilon(\sqrt{3}-1)/2}{1+(\sqrt{3}-1)\varepsilon+(2-\sqrt{3})\varepsilon^2}A\qquad e_2=\frac{\varepsilon(1-\sqrt{3})/2}{1+(\sqrt{3}-1)\varepsilon+(2-\sqrt{3})\varepsilon^2}A$$

Case 3: Consumption Model with Price and Consumption Memory

• Difference Equation for prices:

$$\lambda_{k+1} = \frac{\rho - \alpha}{\gamma + \rho} \lambda_k + \frac{\alpha}{\gamma + \rho} \lambda_{k-1} + 2\alpha d_k - \frac{2\alpha\rho}{\gamma + \rho} d_{k-1}$$

• Recall assumptions made:

•
$$V_k(x_k) = p(x_k) + J_k^* = \gamma x_k^2$$

- $h(u_k, d_k) = \rho(u_k d_k)^2$
- Stability guaranteed for $\tilde{\varepsilon}:=\alpha/\gamma < 1/2 + \rho/\gamma$
- Faster convergence to equilibrium

Case 3: Consumption Model with Price and Consumption Memory

• Difference Equation for prices:

$$\lambda_{k+1} = \frac{\rho - \alpha}{\gamma + \rho} \lambda_k + \frac{\alpha}{\gamma + \rho} \lambda_{k-1} + 2\alpha d_k - \frac{2\alpha\rho}{\gamma + \rho} d_{k-1}$$

• Recall assumptions made:

•
$$V_k(x_k) = p(x_k) + J_k^* = \gamma x_k^2$$

- $h(u_k, d_k) = \rho(u_k d_k)^2$
- Stability guaranteed for $\tilde{\varepsilon}:=\alpha/\gamma < 1/2 + \rho/\gamma$
- Faster convergence to equilibrium

Case 3: Consumption Model with Price and Consumption Memory

• Difference Equation for prices:

$$\lambda_{k+1} = \frac{\rho - \alpha}{\gamma + \rho} \lambda_k + \frac{\alpha}{\gamma + \rho} \lambda_{k-1} + 2\alpha d_k - \frac{2\alpha\rho}{\gamma + \rho} d_{k-1}$$

• Recall assumptions made:

•
$$V_k(x_k) = p(x_k) + J_k^* = \gamma x_k^2$$

- $h(u_k, d_k) = \rho(u_k d_k)^2$
- Stability guaranteed for $\tilde{\varepsilon}:=\alpha/\gamma<1/2+\rho/\gamma$

• Faster convergence to equilibrium

Case 3: Consumption Model with Price and Consumption Memory

• Difference Equation for prices:

$$\lambda_{k+1} = \frac{\rho - \alpha}{\gamma + \rho} \lambda_k + \frac{\alpha}{\gamma + \rho} \lambda_{k-1} + 2\alpha d_k - \frac{2\alpha\rho}{\gamma + \rho} d_{k-1}$$

• Recall assumptions made:

•
$$V_k(x_k) = p(x_k) + J_k^* = \gamma x_k^2$$

- $h(u_k, d_k) = \rho(u_k d_k)^2$
- Stability guaranteed for $\tilde{\varepsilon}:=\alpha/\gamma<1/2+\rho/\gamma$
- Faster convergence to equilibrium

Case 3: Consumption Model with Price and Consumption Memory

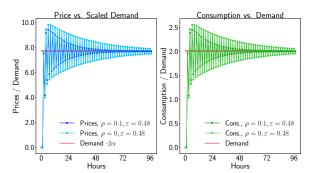
• Difference Equation for prices:

$$\lambda_{k+1} = \frac{\rho - \alpha}{\gamma + \rho} \lambda_k + \frac{\alpha}{\gamma + \rho} \lambda_{k-1} + 2\alpha d_k - \frac{2\alpha\rho}{\gamma + \rho} d_{k-1}$$

• Recall assumptions made:

•
$$V_k(x_k) = p(x_k) + J_k^* = \gamma x_k^2$$

- $h(u_k, d_k) = \rho(u_k d_k)^2$
- Stability guaranteed for $\tilde{\varepsilon}:=\alpha/\gamma < 1/2 + \rho/\gamma$
- Faster convergence to equilibrium



Parameters Used

- α = 2.04
- γ = 4
- $\rho = 0$ or $\rho = 0.1$
- Initial conditions: $\lambda_0 = \lambda_1 = 0$

Summary

Real-Time Pricing of Electricity

- RT Pricing relays risk to end-use customers
- Implications of RT Pricing not well understood
- Our contribution: Analysis of price and consumption stability

Dynamic Consumption Behavior

- Previous analysis assumed *static* utility functions
- *Our contribution*: Derivation of consumption models with price and consumption memory

Follow-Up Work

• Formulation of *hedging strategies* for load-serving entities to mitigate risk

Summary

Real-Time Pricing of Electricity

- RT Pricing relays risk to end-use customers
- Implications of RT Pricing not well understood
- Our contribution: Analysis of price and consumption stability

Dynamic Consumption Behavior

- Previous analysis assumed *static* utility functions
- *Our contribution*: Derivation of consumption models with price and consumption memory

Follow-Up Work

• Formulation of *hedging strategies* for load-serving entities to mitigate risk

Summary

Real-Time Pricing of Electricity

- RT Pricing relays risk to end-use customers
- Implications of RT Pricing not well understood
- Our contribution: Analysis of price and consumption stability

Dynamic Consumption Behavior

- Previous analysis assumed *static* utility functions
- *Our contribution*: Derivation of consumption models with price and consumption memory

Follow-Up Work

• Formulation of *hedging strategies* for load-serving entities to mitigate risk

Thank You! Questions?