Quantitative Comparison of Data-Driven and Physics
Based Models for Commercial Building HVAC Systems

Datong P. Zhou, Qie Hu, Claire J. Tomlin

University of California, Berkeley

[datong.zhou, giehu, tomlin]@berkeley.edu

May 25, 2017




|
Background

Energy Consumption of Buildings
@ =~ 40% of total energy consumption in developed countries’
@ HVAC Systems are major source of this consumption

LLuis Pérez-Lombard, José Ortiz, and Christine Pout. “A Review on Buildings Energy Consumption Information”. In: Energy and Buildings 40 (2008),
pp. 304-308.



|
Background

Energy Consumption of Buildings
@ =~ 40% of total energy consumption in developed countries’
@ HVAC Systems are major source of this consumption
Frequency Regulation and Demand-Side Management
o Use elasticity of buildings’ energy consumption

LLuis Pérez-Lombard, José Ortiz, and Christine Pout. “A Review on Buildings Energy Consumption Information”. In: Energy and Buildings 40 (2008),
pp. 304-308.



|
Background

Energy Consumption of Buildings
@ =~ 40% of total energy consumption in developed countries’
@ HVAC Systems are major source of this consumption
Frequency Regulation and Demand-Side Management
o Use elasticity of buildings’ energy consumption
@ Exploit inherent thermal inertia to shift consumption in time

LLuis Pérez-Lombard, José Ortiz, and Christine Pout. “A Review on Buildings Energy Consumption Information”. In: Energy and Buildings 40 (2008),
pp. 304-308.



|
Background

Energy Consumption of Buildings
@ =~ 40% of total energy consumption in developed countries’
@ HVAC Systems are major source of this consumption
Frequency Regulation and Demand-Side Management
o Use elasticity of buildings’ energy consumption
@ Exploit inherent thermal inertia to shift consumption in time
o Aggregate buildings thermal capacities to offer as ancillary service in energy markets?

LLuis Pérez-Lombard, José Ortiz, and Christine Pout. “A Review on Buildings Energy Consumption Information”. In: Energy and Buildings 40 (2008),
pp. 394-398.
2Maximilian Balandat et al. “Contract Design for Frequency Regulation by Aggregations of Commercial Buildings”. In: 52nd Annual Allerton

Conference on Communication, Control, and Computing (2014).



|
Background

Energy Consumption of Buildings

@ =~ 40% of total energy consumption in developed countries’

@ HVAC Systems are major source of this consumption
Frequency Regulation and Demand-Side Management

o Use elasticity of buildings’ energy consumption

@ Exploit inherent thermal inertia to shift consumption in time

o Aggregate buildings thermal capacities to offer as ancillary service in energy markets?
Models for Temperature Evolution

o Traditionally: High-dimensional, physics-based models

o Resistance-Capacitance Models3
o TRNSYS#, EnergyPlus®

LLuis Pérez-Lombard, José Ortiz, and Christine Pout. “A Review on Buildings Energy Consumption Information”. In: Energy and Buildings 40 (2008),
pp. 394-398.

2Maximilian Balandat et al. “Contract Design for Frequency Regulation by Aggregations of Commercial Buildings”. In: 52nd Annual Allerton
Conference on Communication, Control, and Computing (2014).

3H. Hao et al. “Ancillary Service for the Grid via Control of Commercial Building HVAC Systems”. In: American Control Conference 467-472 (2013).

M. Duffy et al. “TRNSYS - Features and Functionality for Building Simulation”. In: /IBSPA Conference (2009), pp. 1950 —1954.

5 Jie Zhao, Khee Poh Lam, and B. Erik Ydstie “EnergyPlus model-based predictive control (EPMPC) by using MATLAB/SIMULINK and MLE+". In
Proceedings of 13th Conference of International Building Performance Simulation Association (2013).



|
Background

Energy Consumption of Buildings

@ =~ 40% of total energy consumption in developed countries’

@ HVAC Systems are major source of this consumption
Frequency Regulation and Demand-Side Management

o Use elasticity of buildings’ energy consumption

@ Exploit inherent thermal inertia to shift consumption in time

o Aggregate buildings thermal capacities to offer as ancillary service in energy markets?
Models for Temperature Evolution

o Traditionally: High-dimensional, physics-based models

o Resistance-Capacitance Models3
o TRNSYS#, EnergyPlus®

@ New approach: Lower-dimensional, purely data-driven models
o Semi-parametric regression®

LLuis Pérez-Lombard, José Ortiz, and Christine Pout. “A Review on Buildings Energy Consumption Information”. In: Energy and Buildings 40 (2008),
pp. 304-308.

2Maximilian Balandat et al. “Contract Design for Frequency Regulation by Aggregations of Commercial Buildings”. In: 52nd Annual Allerton
Conference on Communication, Control, and Computing (2014).

3H. Hao et al. “Ancillary Service for the Grid via Control of Commercial Building HVAC Systems”. In: American Control Conference 467-472 (2013).
M. Duffy et al. “TRNSYS - Features and Functionality for Building Simulation”. In: /BSPA Conference (2009), pp. 1950 ~1954.

5 Jie Zhao, Khee Poh Lam, and B. Erik Ydstie “EnergyPlus model-based predictive control (EPMPC) by using MATLAB/SIMULINK and MLE+". In
Proceedings of 13th Conference of International Building Performance Simulation Association (2013).

6 Anil Aswani et al. “Identifying Models of HVAC Systems Using Semiparametric Regression”. In: American Control Conference (2012).



|
|dentifying Temperature Dynamics

Goals

o Identify a state-space model amenable to HVAC control:

x(k + 1) = Ax(k) + Bu(k) + Cv(k) + qic(k) + e(k)



|
|dentifying Temperature Dynamics

Goals

o Identify a state-space model amenable to HVAC control:
x(k + 1) = Ax(k) + Bu(k) + Cv(k) + qic(k) + e(k)

@ qgic(k): Internal gains due to occupancy and electric devices



|
|dentifying Temperature Dynamics

Goals

o Identify a state-space model amenable to HVAC control:
x(k + 1) = Ax(k) + Bu(k) + Cv(k) + qic(k) + e(k)

@ qgic(k): Internal gains due to occupancy and electric devices
@ Estimate gig(k) from one year of temperature data of the 4th floor of SDH

3/12



|
|dentifying Temperature Dynamics

Goals

o Identify a state-space model amenable to HVAC control:
x(k + 1) = Ax(k) + Bu(k) + Cv(k) + qic(k) + e(k)

@ qgic(k): Internal gains due to occupancy and electric devices

@ Estimate gig(k) from one year of temperature data of the 4th floor of SDH
o Daily Variation?
o Seasonal Variation?

3/12



|
|dentifying Temperature Dynamics

Goals

o Identify a state-space model amenable to HVAC control:
x(k + 1) = Ax(k) + Bu(k) + Cv(k) + qic(k) + e(k)

@ qgic(k): Internal gains due to occupancy and electric devices

@ Estimate gig(k) from one year of temperature data of the 4th floor of SDH
o Daily Variation?
o Seasonal Variation?

@ Implement energy-efficient controller based on identified state space model

3/12



|
|dentifying Temperature Dynamics

Goals

o Identify a state-space model amenable to HVAC control:

x(k + 1) = Ax(k) + Bu(k) + Cv(k) + qic(k) + €(k)

gic(k): Internal gains due to occupancy and electric devices

Estimate qic(k) from one year of temperature data of the 4th floor of SDH
o Daily Variation?
o Seasonal Variation?

Implement energy-efficient controller based on identified state space model
Testbed: 4th floor of Sutardja Dai Hall, UC Berkeley office building

| Northwest Northeast




|
|dentifying Temperature Dynamics

Goals

o Identify a state-space model amenable to HVAC control:
x(k + 1) = Ax(k) + Bu(k) + Cv(k) + qic(k) + €(k)

@ qic(k): Internal gains due to occupancy and electric devices

@ Estimate qic(k) from one year of temperature data of the 4th floor of SDH
o Daily Variation?
o Seasonal Variation?

@ Implement energy-efficient controller based on identified state space model

@ Testbed: 4th floor of Sutardja Dai Hall, UC Berkeley office building

| Northwest Northeast

Methodology

@ Simple, low-dimensional model:
Semiparametric Regression




|
|dentifying Temperature Dynamics

Goals

o Identify a state-space model amenable to HVAC control:
x(k + 1) = Ax(k) + Bu(k) + Cv(k) + qic(k) + €(k)

@ qic(k): Internal gains due to occupancy and electric devices

@ Estimate qic(k) from one year of temperature data of the 4th floor of SDH
o Daily Variation?
o Seasonal Variation?

@ Implement energy-efficient controller based on identified state space model

@ Testbed: 4th floor of Sutardja Dai Hall, UC Berkeley office building

| Northwest Northeast

Methodology

@ Simple, low-dimensional model:
Semiparametric Regression

@ Complex, high-dimensional,
physics-based model:
Resistance-Capacitance



|
|dentifying Temperature Dynamics

Goals

o Identify a state-space model amenable to HVAC control:
x(k + 1) = Ax(k) + Bu(k) + Cv(k) + qic(k) + €(k)

@ qic(k): Internal gains due to occupancy and electric devices

@ Estimate qic(k) from one year of temperature data of the 4th floor of SDH
o Daily Variation?
o Seasonal Variation?

@ Implement energy-efficient controller based on identified state space model

@ Testbed: 4th floor of Sutardja Dai Hall, UC Berkeley office building

| Northwest Northeast

Methodology

@ Simple, low-dimensional model:
Semiparametric Regression

@ Complex, high-dimensional,
physics-based model:
Resistance-Capacitance

How do the models compare to each other?



|
Model 1: Semiparametric Regression

Lumped Zone Model
@ Discrete time state space model:

x(k + 1) = ax(k) 4 bu(k) + ¢ "v(k) + qic (k) + (k)

(1)



|
Model 1: Semiparametric Regression

Lumped Zone Model
@ Discrete time state space model:
x(k + 1) = ax(k) + bu(k) + c’ v(k) + qic(k) + €(k) (1)

@ v is vector of known disturbances: Ambient air temperature, HVAC supply air
temperature, solar radiation (4 cardinal directions)
@ Smoothing of (1) yields

x(k +1) — %(k + 1) = a(x(k) — %(k)) + b(u(k) — d(k)) + CT(v(k) — (k) + e(k)



|
Model 1: Semiparametric Regression

Lumped Zone Model
@ Discrete time state space model:

x(k +1) = ax(k) + bu(k) + ¢ v(k) + qic (k) + (k) (1)

@ v is vector of known disturbances: Ambient air temperature, HVAC supply air
temperature, solar radiation (4 cardinal directions)
@ Smoothing of (1) yields

x(k +1) = R(k + 1) = a(x(k) — £(k)) + b(u(k) — d(k)) 4+ ¢ (v(k) — 0(k)) + (k)
o Coefficients a, b, ¢ can be found with linear regression, using an additional prior:
(3,b,) =argmin (Jr + Jw + Js) + £, %(@ = pa) I* + 15, %(b — o)

st Jx =2 o Ixi(k +1) = Xi(k + 1) — a(xi(k) — %i(k)) @)

— b (ui(k) — di(k)) — ¢ (vi(k) = %(K)) |I°
for ¥ e {F,W,S8}, 0<a<1 b<0, c>0.



|
Model 1: Semiparametric Regression

Lumped Zone Model
@ Discrete time state space model:

x(k +1) = ax(k) + bu(k) + ¢ v(k) + qic (k) + (k) (1)

@ v is vector of known disturbances: Ambient air temperature, HVAC supply air
temperature, solar radiation (4 cardinal directions)
Smoothing of (1) yields

x(k+1) — £(k +1) = a(x(k) — £(k)) + b(u(k) — a(k)) 4+ ¢ (v(k) — 0(k)) + (k)
o Coefficients a, b, ¢ can be found with linear regression, using an additional prior:

(8,5,6) = argmin (Jr + Jw + Js) + T3/ 2(a = wo)|I> + %5 /(b — o)

st Jx =Y icx IXi(k +1) = Ki(k 4+ 1) — a(xi(k) — %i(k)) @)
— b(ui(k) = ai(k)) = " (vi(k) = %(K)) |
for ¥ e {F,W,S8}, 0<a<1 b<0, c>0.
o Collect observational data from fall (F), winter (W), spring (S) period



|
Model 1: Semiparametric Regression

Lumped Zone Model
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Insufficent excitation of SDH motivates use of Bayesian priors

@ 1, from (2) without priors
e up from excitation experiments: x(k + 1) — x(k) = bu(k)
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Individual Zone Model
@ Discrete time state space model:
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Individual Zone Model
@ Discrete time state space model:

x(k + 1) = Ax(k) + Bu(k) + Cv(k) + qic,x (k) for X € {F, W, S} 3)

o Newton's Law of Cooling:

#£0, ifi=jor(i,j) adjacent
Aj = .
0, otherwise.

Northwest Northeast
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Individual Zone Model

@ Discrete time state space model:

x(k + 1) = Ax(k) + Bu(k) + Cv(k) + qic,x (k) for X € {F, W, S}

o Newton's Law of Cooling:

Optimization Results
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Two Step Parameter Estimation’
@ Set fig(k) =0 in (4) to estimate A, By, Bu,;, B,

o Use Kalman Filter to estimate unmeasurable states (wall, ceiling, floor temperatures)

7Q. Hu et al. “Model Identification of Commercial Building HVAC Systems During Regular Operation - Empirical Results and Challenges” . In:
American Control Conference (2016), pp. 605-610.
6/12



|
Model 2: Physics-Based Model

Model Setup

@ Temperature model:

x(k + 1) = Ax(k) + Bov(k) + Bicfi(k) + > _(Buyx(k) + Buyv(k))ui(k)  (4)

i=1

y = Cx(k)
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Two Step Parameter Estimation’
@ Set fig(k) =0 in (4) to estimate A, By, Bu,;, B,

o Use Kalman Filter to estimate unmeasurable states (wall, ceiling, floor temperatures)

@ Identify internal gains CBisfic(k)

7Q. Hu et al. “Model Identification of Commercial Building HVAC Systems During Regular Operation - Empirical Results and Challenges” . In:
American Control Conference (2016), pp. 605-610.
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@ Temperature model:
21
x(k + 1) = Ax(k) + Buv(k) + Bicfic(k) + Z(Bxufx(k) + Buy;v(k))ui(k)
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y = Cx(k)
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@ y € R® represents average zone temperatures
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@ Temperature model:
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Prediction Accuracy

Root Mean Square Error:

RMSE = \/% S [R(k) = x(K))?
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Prediction Accuracy Dot Driven Model
ata-Driven Mode
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Prediction Accuracy
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@ Comparison of models on identical

testbed is novelty
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Comparison of Models (cont'd.)

Model Predictive Control for Energy Efficiency

@ Use state space models in energy efficient control scheme

N
min >~ u(k)? + plle]z
T k=1

s.t. x(0) = x(0)
Ak+”_{AAU+BMH+CWH+mdM7 M1
Ax(k) + Buv(k) + Bicfic(k) + 3, (Bxuix(k) + Buv(K))ui(k), M2
Umin—¢ < u(k) < Umaxte vk € [0, N —1]
{Tmin < x(k) < Tmax, M1

Vk € [1, N]
Tmin S CX(k) S Tmax7 M2
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Model Predictive Control for Energy Efficiency

@ Use state space models in energy efficient control scheme

N
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T k=1

s.t. x(0) = x(0)
Ak+”_{AAU+BMH+CWH+mdM7 M1
Ax(k) + Byv(k) + Bicfic(k) + 3;(Bxuix(k) + Bu,v(k))ui(k), M2
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{Tmin < x(k) < Tmax, M1

Vk € [1, N]
Tmin S CX(k) S Tmax7 M2

@ Soft constraints on VAV flow

9/12



-
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Model Predictive Control for Energy Efficiency

@ Use state space models in energy efficient control scheme

N
min >~ u(k)® + pll[-
T k=1

s.t. x(0) = x(0)
Ak+”_{AAU+BMH+CWH+mdM7 M1
Ax(k) + Buv(k) + Bicfic(k) + 3, (Bxuix(k) + Buv(K))ui(k), M2
Umin—¢ < u(k) < Umaxte vk € [0, N —1]
{Tm-n <x(K) < Toory M1

Vk € [1, N]
Tin < Cx(k) < Thax, M2

@ Soft constraints on VAV flow
e Comfort bounds: Tpin = 20°C, Tymax = 22°C8

8Shirley J. Hansen and H.E. Burroughs. Managing Indoor Air Quality. Lulu Press, Inc., 2013.
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Comparison of Models (cont'd.)

Model Predictive Control for Energy Efficiency

@ Use state space models in energy efficient control scheme

N
min >~ u(k)® + pll[-
T k=1

s.t. x(0) = x(0)
Ak+”_{AAU+BMH+CWH+mdM7 M1
Ax(k) + Buv(k) + Bicfic(k) + 3, (Bxuix(k) + Buv(K))ui(k), M2
Umin—¢ < u(k) < Umaxte vk € [0, N —1]
{Tm-n <x(K) < Toory M1

Vk € [1, N]
Tin < Cx(k) < Thax, M2

@ Soft constraints on VAV flow
e Comfort bounds: Tpin = 20°C, Tymax = 22°C8

@ Strategy: Use control effort only when “close” to comfort bounds

8Shirley J. Hansen and H.E. Burroughs. Managing Indoor Air Quality. Lulu Press, Inc., 2013.
9/12



-
Comparison of Models (cont'd.)

Simulation Results
@ Set up MPC with prediction horizon N =3
@ Simulate 7 days without state feedback



Comparison of Models (cont'd.)

Simulation Results
@ Set up MPC with prediction horizon N =3
@ Simulate 7 days without state feedback

Northwest West Northwest West
T o 1 [
06 1
04
M 05 A
02 LI e et > T
5 95 o o
Won Tue Wed Thu Fr Sal Sun Non WMon Tue Wed Thu Fri Sal Sun Mon Mon Tue Wed Thu Fri Sal Sun Mon Mon Tue Wed Thu Fri Sal Sun Mon
South East South East
225 s
2 2 oghremmmmmm e
215 15
21 08
1
205 04
20 o T T 02 L e e e e
195 95 o ol
Won Tue Wed Thu Fri Sat Sun Non WMon Tue Wed Thu Fri Sat Sun Mon Mon Tue Wed Thu Fri Sat Sun Non Mon Tue Wed Thu Fri Sal Sun Mon
Northeast Center Northeast Center
o225 — -
L I Tos )
255 B A e e e e TR
5 205 ———MPC: Data-Driven 2 LR LI D
2 MPG:Physics-Based| Eo2 .
E 20 20} - - - [ = = — Measure . = 05
2105 195 <0 0
Mon Tue Wed Thu Fri Sat Sun Mon Mon Tue Wed Thu Fri Sal Sun Mon Mon Tue Wed Thu Fi Sal Sun Mon Mon Tue Wed Thu Fri Sal Sun Mon

Figure: Temperature profiles Figure: VAV Airflow

10



|
Comparison of Models (cont'd.)

Simulation Results
@ Set up MPC with prediction horizon N =3
@ Simulate 7 days without state feedback
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@ Very similar performance in terms of control cost
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Simulation Results
@ Set up MPC with prediction horizon N =3
@ Simulate 7 days without state feedback
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@ Very similar performance in terms of control cost
If state feedback employed, expect differences between M1 and M2 to become minor
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Comparison of Models (cont'd.)

Simulation Results
@ Set up MPC with prediction horizon N =3
@ Simulate 7 days without state feedback
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Figure: Temperature profiles Figure: VAV Airflow

@ Very similar performance in terms of control cost
If state feedback employed, expect differences between M1 and M2 to become minor
@ M1 fast (5 minutes), M2 slow (20 hours) on 2 GHz Intel Core i7, 16 GB MHz DDR3
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Summary

System ldentification of Temperature Model in Sutardja Dai Hall (SDH)
@ Model 1: Low dimensional, data-driven model (semiparametric regression)
@ Model 2: High fidelity, physics-based model (BRCM Toolbox)

@ Comparison of both models on the same testbed under regular operation
Simulation of Energy Efficient Control
@ Model 1 and Model 2 yield similar control strategy

@ Model 1 precise enough for most real-time control applications

Outlook

@ Implementation of controller for real-time operation of SDH
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Thank You!
Questions?



