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Background

Energy Consumption of Buildings

≈ 40% of total energy consumption in developed countries1

HVAC Systems are major source of this consumption

Frequency Regulation and Demand-Side Management

Use elasticity of buildings’ energy consumption

Exploit inherent thermal inertia to shift consumption in time

Aggregate buildings thermal capacities to offer as ancillary service in energy markets2

Models for Temperature Evolution
Traditionally: High-dimensional, physics-based models

Resistance-Capacitance Models3

TRNSYS4, EnergyPlus5

New approach: Lower-dimensional, purely data-driven models
Semi-parametric regression6

1Luis Pérez-Lombard, José Ortiz, and Christine Pout. “A Review on Buildings Energy Consumption Information”. In: Energy and Buildings 40 (2008),
pp. 394–398.

2Maximilian Balandat et al. “Contract Design for Frequency Regulation by Aggregations of Commercial Buildings”. In: 52nd Annual Allerton
Conference on Communication, Control, and Computing (2014).

3H. Hao et al. “Ancillary Service for the Grid via Control of Commercial Building HVAC Systems”. In: American Control Conference 467-472 (2013).
4M. Duffy et al. “TRNSYS - Features and Functionality for Building Simulation”. In: IBSPA Conference (2009), pp. 1950 –1954.
5Jie Zhao, Khee Poh Lam, and B. Erik Ydstie. “EnergyPlus model-based predictive control (EPMPC) by using MATLAB/SIMULINK and MLE+”. In:

Proceedings of 13th Conference of International Building Performance Simulation Association (2013).
6Anil Aswani et al. “Identifying Models of HVAC Systems Using Semiparametric Regression”. In: American Control Conference (2012).
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Identifying Temperature Dynamics

Goals

Identify a state-space model amenable to HVAC control:

x(k + 1) = Ax(k) + Bu(k) + Cv(k) + qIG(k) + ε(k)

qIG(k): Internal gains due to occupancy and electric devices

Estimate qIG(k) from one year of temperature data of the 4th floor of SDH
Daily Variation?
Seasonal Variation?

Implement energy-efficient controller based on identified state space model

Testbed: 4th floor of Sutardja Dai Hall, UC Berkeley office building

Methodology

1 Simple, low-dimensional model:
Semiparametric Regression

2 Complex, high-dimensional,
physics-based model:
Resistance-Capacitance

How do the models compare to each other?
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Model 1: Semiparametric Regression

Lumped Zone Model

Discrete time state space model:

x(k + 1) = ax(k) + bu(k) + c>v(k) + qIG (k) + ε(k) (1)

v is vector of known disturbances: Ambient air temperature, HVAC supply air
temperature, solar radiation (4 cardinal directions)

Smoothing of (1) yields

x(k + 1)− x̂(k + 1) = a(x(k)− x̂(k)) + b(u(k)− û(k)) + c>(v(k)− v̂(k)) + ε(k)

Coefficients a, b, c can be found with linear regression, using an additional prior:

(â, b̂, ĉ) = arg min
a,b,c

(JF + JW + JS) + ‖Σ−1/2
a (a− µa)‖2 + ‖Σ−1/2

b (b − µb)‖2

s.t. JX =
∑

i∈X ‖xi (k + 1)− x̂i (k + 1)− a (xi (k)− x̂i (k))

− b (ui (k)− ûi (k))− c> (vi (k)− v̂i (k)) ‖2

for X ∈ {F ,W,S}, 0 < a < 1, b ≤ 0, c ≥ 0.

(2)

Collect observational data from fall (F), winter (W), spring (S) period
Insufficent excitation of SDH motivates use of Bayesian priors

µa from (2) without priors
µb from excitation experiments: x(k + 1) − x(k) = bu(k)

4 / 12
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Coefficients a, b, c can be found with linear regression, using an additional prior:
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Coefficients a, b, c can be found with linear regression, using an additional prior:
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Model 1: Semiparametric Regression (cont’d.)

Individual Zone Model

Discrete time state space model:

x(k + 1) = Ax(k) + Bu(k) + Cv(k) + qIG,X (k) for X ∈ {F ,W,S} (3)

Newton’s Law of Cooling:

Aij =

{
6= 0, if i = j or (i , j) adjacent

0, otherwise.

Optimization Results
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Model 1: Semiparametric Regression (cont’d.)
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Model 2: Physics-Based Model

Model Setup

Temperature model:

x(k + 1) = Ax(k) + Bvv(k) + BIG fIG (k) +
21∑
i=1

(Bxui x(k) + Bvui v(k))ui (k) (4)

y = Cx(k)

x ∈ R289 represents temperatures of building walls, ceilings, floors, zone air

y ∈ R6 represents average zone temperatures

Two Step Parameter Estimation7

1 Set fIG (k) ≡ 0 in (4) to estimate A, Bv , Bxui , Bvui

Use Kalman Filter to estimate unmeasurable states (wall, ceiling, floor temperatures)

2 Identify internal gains CBIG fIG (k)

7Q. Hu et al. “Model Identification of Commercial Building HVAC Systems During Regular Operation - Empirical Results and Challenges”. In:
American Control Conference (2016), pp. 605–610.
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Model 2: Physics-Based Model (cont’d.)

Temperature model:
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Model 2: Physics-Based Model (cont’d.)
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Comparison of Models

Prediction Accuracy

Root Mean Square Error:

RMSE =

√
1

N

∑N
k=1 [x̄(k)− x(k)]2

Data-Driven Model
Season NW W S E NE C Mean

Fall 0.98 0.61 0.28 0.42 0.28 0.36 0.488
Winter 1.41 0.34 0.29 0.26 0.25 0.21 0.460
Spring 0.56 0.25 0.31 0.71 0.17 0.34 0.390

Physics-Based Model
Season NW W S E NE C Mean

Fall 0.61 0.46 0.39 0.39 0.20 0.32 0.396
Winter 0.55 0.39 0.34 0.32 0.18 0.24 0.338
Spring 0.45 0.28 0.24 0.33 0.09 0.19 0.263

Comparison of Open Loop Trajectories
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(no isolated testbed)

Comparison of models on identical
testbed is novelty
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Comparison of Models (cont’d.)

Model Predictive Control for Energy Efficiency

Use state space models in energy efficient control scheme

min
u,ε

N∑
k=1

u(k)2 + ρ‖ε‖2

s.t. x(0) = x̄(0)

x(k + 1) =

{
Ax(k) + Bu(k) + Cv(k) + qIG (k), M1

Ax(k) + Bvv(k) + BIG fIG (k) +
∑

i (Bxui x(k) + Bvui v(k))ui (k), M2

umin−ε ≤ u(k) ≤ umax+ε ∀k ∈ [0,N − 1]{
Tmin ≤ x(k) ≤ Tmax, M1

Tmin ≤ Cx(k) ≤ Tmax, M2
∀k ∈ [1,N]

Soft constraints on VAV flow

Comfort bounds: Tmin = 20◦C, Tmax = 22◦C8

Strategy: Use control effort only when “close” to comfort bounds

8Shirley J. Hansen and H.E. Burroughs. Managing Indoor Air Quality. Lulu Press, Inc., 2013.
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Comparison of Models (cont’d.)
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Comparison of Models (cont’d.)

Simulation Results
Set up MPC with prediction horizon N = 3
Simulate 7 days without state feedback

Figure: Temperature profiles Figure: VAV Airflow

Very similar performance in terms of control cost
If state feedback employed, expect differences between M1 and M2 to become minor
M1 fast (5 minutes), M2 slow (20 hours) on 2 GHz Intel Core i7, 16 GB MHz DDR3
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Summary

System Identification of Temperature Model in Sutardja Dai Hall (SDH)

Model 1: Low dimensional, data-driven model (semiparametric regression)

Model 2: High fidelity, physics-based model (BRCM Toolbox)

Comparison of both models on the same testbed under regular operation

Simulation of Energy Efficient Control

Model 1 and Model 2 yield similar control strategy

Model 1 precise enough for most real-time control applications

Outlook

Implementation of controller for real-time operation of SDH
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Thank You!

Questions?
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