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Residential Demand Response

Background

Reliable grid operation is dependent on adequate supply and flexible resources

2009: CAISO proposes “Proxy Demand Resource Product” to “facilitate
the participation of existing retail demand programs in the ISO market”

Proxy Demand Resources (PDRs) offer bids to reflect flexibility to adjust load
in response to market schedules

July 2015: CPUC Resolution E-4728 approves an auction mechanism for
demand response capacity, called the “Demand Response Auction
Mechanism (DRAM)”

(Residential) Demand Response Providers with the ability to aggregate
customers capable of reducing load participate in the ISO day-ahead,
real-time ancillary services market

Utilities can obtain resource adequacy through residential resources

Benchmarking of reduction potential by using consumption “baselines”
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Estimating the Counterfactual

Causal Inference: Set of users I = {1, . . . ,N}, each user has observed
outcomes yi = {yi1, . . . , yiτ}, corresponding covariates Xi = {xi1, . . . , xiτ},
and binary treatment indicator Dit

Potential outcomes framework (Rubin, 1974) and fundamental problem of
causal inference:

yit = y0
it + Dit(y

1
it − y0

it) ∀ i ∈ I, t ∈ {1, . . . , τ}
That is, either the treatment outcome y 1

it or the control outcome y 0
it can be

observed, but never both.

Individual treatment effect βi (ITE) and average treatment effect (ATE) µ:

βi = E[y1
it − y0

it ] =
1

|Ti |
∑
j∈Ti

(y1
ij − y0

ij ) µ =
1

N

∑
i∈I

βi

How can we estimate ITEs, given the fundamental problem of causal
inference?

⇒ Estimate counterfactuals!
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Measuring Reduction in Consumption

Estimate the demand reduction by using suitable baselines (counterfactuals)

Figure: Estimated counterfactual vs. actual consumption1

1Courtesy of Maximilian Balandat
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Today’s Talk

Agenda

Motivation for Residential Demand Response (done)

Related work

Methods for estimating the counterfactual consumption

(Black box) Machine Learning methods

Estimation of average treatment effects

User-specific analysis

Typical load shapes
Variation of ITE across users

Case study on DR program in California

Conclusion and further work
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Related Work

Economics

Experimental Settings (Randomized Control Trials): Measure the
counterfactual

Non-experimental settings: Obtain non-experimental estimates of the
counterfactual23

Engineering

Short-term load forecasting (STLF):

Effect of aggregation size
Estimation accuracy

Load shape analysis

Load scheduling

...

2Abadie et al.: Synthetic control methods for comparative case studies: Estimating the effect of
California’s tobacco control program, Journal of the American Statistical Association, 2012

3Bollinger et al.: Welfare Effects of Home Automation Technology with Dynamic Pricing, 2015
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Machine Learning for Short-Term Load Forecasting

Basic outcome model:

yit = fi (xit) + Ditβi + εit

Treatment and control data:

Di,t = {(xit , yit) | t ∈ Ti} Ti = {t ∈ T | Dit = 1}
Di,c = {(xit , yit) | t ∈ Ci} Ci = {t ∈ T | Dit = 0}

Two-step strategy to estimate counterfactuals:
Estimate conditional mean function f̂i (·) : Rn 7→ R on control data Di,c with
any regression method
Obtain counterfactuals: ŷ 0

ij = f̂i (x1
ij) ∀ j ∈ Ti =⇒ β̂i = 1

|Ti |
∑

j∈Ti
(f̂i (x1

it)− y 1
ij )

Regression methods used:
CAISO 10-in-10 Baseline (BL)
Ordinary Least Squares Regression (OLS)
LASSO (L1) and Ridge Regression (L2)
k-Nearest Neighbors Regression (KNN)
Decision Tree Regression (DT)
Random Forest Regression (RFR)
. . .
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Further Analyses

Statistical Hypothesis Testing

Wilcoxon Signed Rank Test (paired difference test) to compare {y1
ij | j ∈ Ti}

and {ŷ0
ij | j ∈ Ti}

Null hypothesis H0: The samples {y1
ij | j ∈ Ti} and {ŷ0

ij | j ∈ Ti} are drawn
from the same distribution

U ∼ N (µ, σ2) µ = 0, σ2 =
|Ti |(|Ti |+ 1)(2|Ti |+ 1)

6
if |Ti | large enough

For each user i ∈ I, determine rank and test statistic to determine a p-value

Variability of Load Shapes

Use k-means clustering on daily load shapes to find characteristic profiles
{C1, . . . ,Ck}
Use entropy measure Hi to characterize variability of consumption behavior:

Hi = −
k∑

s=1

ps(Cs) log(ps(Cs))
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ij | j ∈ Ti} are drawn
from the same distribution

U ∼ N (µ, σ2) µ = 0, σ2 =
|Ti |(|Ti |+ 1)(2|Ti |+ 1)

6
if |Ti | large enough

For each user i ∈ I, determine rank and test statistic to determine a p-value

Variability of Load Shapes

Use k-means clustering on daily load shapes to find characteristic profiles
{C1, . . . ,Ck}
Use entropy measure Hi to characterize variability of consumption behavior:

Hi = −
k∑

s=1

ps(Cs) log(ps(Cs))

8 / 16



Further Analyses

Statistical Hypothesis Testing

Wilcoxon Signed Rank Test (paired difference test) to compare {y1
ij | j ∈ Ti}

and {ŷ0
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Case Study on DR Program

Hourly smart meter time series data on residential customers in California
Hourly ambient air temperature scraped from public data sources
Data preprocessing

Drop obvious outliers
Drop negative consumption data (and all users on net energy metering)

Split cleaned hourly consumption
data into three sets:

Di,t , i.e. the treatment data set
Di,p ⊂ Di,c , the placebo
treatment set
Di,tr = Di,c \ Di,p, the training
data set

Choose covariates:

Hour of the day as a categorical
variable
Ambient air temperature
Previous nar hourly consumption
values

Number of Users by Geographic Region

2

4

6

8

10

12

14

Figure: Distribution of Users

9 / 16



Case Study on DR Program

Hourly smart meter time series data on residential customers in California
Hourly ambient air temperature scraped from public data sources
Data preprocessing

Drop obvious outliers
Drop negative consumption data (and all users on net energy metering)

Split cleaned hourly consumption
data into three sets:

Di,t , i.e. the treatment data set
Di,p ⊂ Di,c , the placebo
treatment set
Di,tr = Di,c \ Di,p, the training
data set

Choose covariates:

Hour of the day as a categorical
variable
Ambient air temperature
Previous nar hourly consumption
values

Number of Users by Geographic Region

2

4

6

8

10

12

14

Figure: Distribution of Users

9 / 16



Case Study on DR Program

Hourly smart meter time series data on residential customers in California
Hourly ambient air temperature scraped from public data sources
Data preprocessing

Drop obvious outliers
Drop negative consumption data (and all users on net energy metering)

Split cleaned hourly consumption
data into three sets:

Di,t , i.e. the treatment data set
Di,p ⊂ Di,c , the placebo
treatment set
Di,tr = Di,c \ Di,p, the training
data set

Choose covariates:

Hour of the day as a categorical
variable
Ambient air temperature
Previous nar hourly consumption
values

Number of Users by Geographic Region

2

4

6

8

10

12

14

Figure: Distribution of Users

9 / 16



Case Study on DR Program (cont’d)

Prediction Accuracy
Define Mean Absolute Percentage Error (MAPE) as metric for prediction
accuracy:

MAPE =
1

|Di,v |
∑

j∈Di,v

∣∣∣∣∣ f̂i (xij)− yij
yij

∣∣∣∣∣ · 100%

BL DT KNN L1 L2 OLS RFR0

20

40

60

80

100

120

M
AP

E 
[%

]

Mean Absolute Percentage Error by Method

Figure: MAPEs by Prediction Method

CAISO baseline performs worst
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Case Study on DR Program (cont’d)

ITEs by Geographic Region
Larger reductions in warmer regions

Average Reductions [kWh] by Geographic Region, RFR (200 Trees)

2

1

0

1

2

3

Figure: Geographic Distribution of ITEs
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Case Study on DR Program (cont’d)

Average Treatment Effect Estimation

Random Forest performs best

Highest reductions in the evening

Placebo events show ≈ zero reduction

9 10 11 13 14 15 16 17 18 19 20 22
Hour of the Day

0.2

0.0

0.2

0.4
Estimated Reductions for #OhmHours (yellow) and Placebo Hours (grey), RFR (200 trees)

Figure: Estimated Reductions by Hour of the Day

12 / 16



Case Study on DR Program (cont’d)

Types of Load Shapes

Morning + evening peak

Daytime peak

Night peak

Evening peak

Interesting Observation

Users with higher entropy reduce
more
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Figure: Characteristic Load Shapes
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Figure: Percentage of Rejected Nulls vs. Forecasting Method
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Conclusion

Description of Residential Demand Response using ordinary machine learning
methods

Estimation of counterfactual consumption during DR events

Presented Black-box Machine Learning Methods

OLS, L1, L2, KNN, DT, RFR
Random Forest has lowest MAPE

Identified “dictionary” of load shapes to compute variability of consumption

Discovered a higher percentage of reduction among more variable users
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Further Work

Completed/In Progress

Improve estimation of counterfactual by using latent variables4

Hidden Markov Model
Mixture Models

Nonparametric Estimators5

Analysis of bias and variance in estimation process5

Mechanism Design for DR elicitation

Upcoming

Time series modeling to estimate causal impact of DR interventions

Run Randomized Control Trial (RCT) to

Validate non-experimental estimates of DR reduction
Target most susceptible users for DR incentives

4D. Zhou, M. Balandat, C. Tomlin: A Bayesian Perspective on Residential Demand Response Using Smart
Meter Data. 54th Annual Allerton Conference on Communication, Control, and Computing, September 2016

5M. Balandat: PhD Thesis. University of California, Berkeley, 2016
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Thank You!
Questions?
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