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Short-Term Load Forecasting History of Residential Demand Response

Residential Demand Response

Background

Reliable grid operation is dependent on adequate supply and flexible resources

2009: CAISO proposes “Proxy Demand Resource Product” to “facilitate the
participation of existing retail demand programs in the ISO market”

Proxy Demand Resources (PDRs) offer bids to reflect flexibility to adjust load
in response to market schedules

CPUC Resolution E-4728 (July 2015) approves “an auction mechanism for
demand response capacity, called the demand response auction mechanism
(DRAM)”

(Residential) Demand Response Providers with the ability to aggregate
customers capable of reducing load participate in the ISO day-ahead,
real-time ancillary services market

Utilities can obtain resource adequacy through residential resources

Benchmarking of reduction potential by using consumption “baselines”
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Short-Term Load Forecasting History of Residential Demand Response

Measuring Reduction in Consumption

Estimate the demand reduction by using suitable baselines (counterfactuals)

Figure: Courtesy of Maximilian Balandat
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Short-Term Load Forecasting Previous Analysis

Previous Work1

Short-term load forecasting on the
individual household level
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Estimation of counterfactual consumption to estimate DR reduction

Measured the variability of users with entropy

Targeting : Users with high variability seem to reduce more during DR events

1D. Zhou, M. Balandat, and C. Tomlin. Residential Demand Response Targeting Using Observational

Data, 55th Conference on Decision and Control, December 2016 (to appear).
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Short-Term Load Forecasting Agenda

Today’s Talk

Agenda

Overview of Machine Learning tools for short-term load forecasting

Inclusion of physically motivated latent variables to improve prediction
accuracy

Key idea: Estimate whether a user has “high” or “low ” consumption

If consumption at t is high, it is probably high at t + 1, as well
If consumption at t is low, it is probably low at t + 1, as well

Bayesian Perspective in STLF: Encode this consumption variable as an
unobserved, latent variable

Conditional Gaussian Mixture Model
Hidden Markov Model

Forecasting Algorithms to estimate DR Reduction

Numerical Results of DR Case Study
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Short-Term Load Forecasting Machine Learning Methods

Machine Learning for Short-Term Load Forecasting

Regression Problem: y = f (X , β), where X is the covariate matrix

Ordinary Least Squares

β̂OLS = arg min
β
‖y − Xβ‖22

Ridge (L2) and Lasso (L1) Regression

β̂L1 = arg min
y
‖y − Xβ‖22 + λ‖β‖1 → ŷL1 = X β̂L1

β̂L1 = arg min
y
‖y − Xβ‖22 + λ‖β‖2 → ŷL2 = X β̂L2

k-Nearest Neighbors Regression

ŷKNN = (y1 + . . .+ yk)/k

Decision Tree Regression: Cross-validation on max. depth and min.
samples per node

Support Vector Regression: Cross-validation on slack variables
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Short-Term Load Forecasting Bayesian Perspective: Latent Variable Models

Latent Variable Models - Mixtures

Mixture of Linear Regression Models
Consider K linear regression models, each governed by own weight wk

Assume a common noise variance σ2

Mixture distribution with mixing proportions {πk}:

P(y |w, σ2, π) =
K∑

k=1

πkN (y |wk · x , σ2)

Idea: Interpret electricity consumption as a result of behavioral archetypes
k = 1, . . . ,K
Expectation-Maximization Algorithm yields update rules:

γnk := E[znk ] = E
[
`(z |xn, θold)

]
=

πkN (yn|wk · xn, σ2)∑K
j=1 πjN (yn|wj · xn, σ2)

πk =
1

N

N∑
n=1

γnk , wk =
[
X>DX

]−1
X>DY , D = diag(γ1k , . . . , γnk)

σ2 =
1

N

N∑
n=1

K∑
k=1

γnk(yn − wk · xn)2
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Short-Term Load Forecasting Bayesian Perspective: Latent Variable Models

Latent Variable Models - Mixtures (cont’d.)

Mixture Models for Prediction

IID assumption of Mixture Models ⇒ cannot capture the temporal
correlation in time series data

Prediction Method 1: Convex combination of learners:

ŷ =
K∑

k=1

π̂k ŵk · x

Prediction Method 2: If model i ’s covariates are “spatially separated” from
model j :

j = arg min
1≤i≤N

‖xi − x‖2

ŷ =
K∑

k=1

γjk ŵk · x
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Short-Term Load Forecasting Bayesian Perspective: Latent Variable Models

Latent Variable Models - Hidden Markov Models

Data often is not i.i.d.
Use on sequential data, e.g. time series, speech recognition, DNA sequences

q0 q1 q2 ... qT−1 qT

y0 y1 y2 ... yT−1 yT

Figure: Hidden Markov Model. Hidden States q, Observations y

Figure: 3 state latent variable, Gaussian emission model
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Short-Term Load Forecasting Bayesian Perspective: Latent Variable Models

Latent Variable Models - Hidden Markov Models (cont’d.)

Elements of HMMs
Hidden Layer: Transition between states is governed by a Markov Process

aij = P(qt = j |qt−1 = i), aij > 0, 1 ≤ i , j ≤ M, t = 0, 1, 2, . . . ,N

0
... 5

6H

6L

...

...

19H

19L

20 ...
23

Figure: Markov Transition Diagram, 24 hour periodicity

Observables: Hidden states “emit” observations according to some
distribution, e.g. Gaussian:

P(yt = y |qt = q) =
1

σq
√

2π
exp

(
− (y − µq)2

2σ2
q

)
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Latent Variable Models - Hidden Markov Models (cont’d.)
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Short-Term Load Forecasting Bayesian Perspective: Latent Variable Models

Latent Variable Models - Hidden Markov Models (cont’d.)

Parameter Estimation

Maximum Likelihood Estimation and EM Algorithm

Use Bayes Rule and conditional independencies of graphical model:

P(qt |y) =:
α(qt)P(yt |qt)β(qt)

P(y)

P(qt , qt+1|y) =
α(qt)β(qt+1)aqt ,qt+1P(yt |qt)P(yt+1|qt+1)

P(y)

Compute α(qt), β(qt) with the famous α-β-recursion

Inference: Filtering, Predicting, Smoothing

P(qt |y0, . . . , yt) =
α(qt)P(yt |qt)
P(y0, . . . , yt)

P(qt+1|y0, . . . , yt) =
α(qt+1)

P(y0, . . . , yt)

P(qt |y0, . . . , yn) =
α(qt)P(yt |qt)β(qt)

P(y0, . . . , yn)
, 0 < n < t
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Short-Term Load Forecasting Experiments on Data

HMM − Case Study

Application of HMM on electricity consumption of residential customers

Fit a HMM on the electricity consumption of 273 customers

Use estimated latent variable as an additional covariate for parametric
regression on electricity consumption

Covariates

5 previous hourly consumptions

5 previous hourly ambient air
temperatures

Model 1: Hour of Day, one-hot
encoded

Model 2: Hour of Day interacted
with latent variable, one-hot
encoded
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Short-Term Load Forecasting Experiments on Data

HMM − Results of Case Study (cont’d.)

Comparison of Prediction Accuracy
Mean Absolute Percentage Error (MAPE):

MAPE =
1

N

N∑
t=1

∣∣∣∣ ŷt − yt
yt

∣∣∣∣

OLS Mix. OLS+ KNNKNN+ DT DT+ SVR SVR+
20

40

60

80 Green: Mean
Red: Median

MAPEs by Model

Figure: MAPEs across 273 users for different ML methods and with / without latent
variable
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Short-Term Load Forecasting Experiments on Data

HMM − Results of Case Study (cont’d.)

Estimated Reductions During DR Hours by Hour of Day

8 9 10 11 12 13 14 15 16 17 18 19
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0.3
Automated Users
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Non-Automated Users
Estimated Hourly DR Reductions with HMM vs. Placebo Tests, ”High” State
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Estimated Hourly DR Reductions with HMM vs. Placebo Tests, ”Low” State

Figure: Boxplots for estimated DR reduction by hour of the day. Top row: “High”
consumption, Bottom Row: “Low” consumption, Left Column: Automated users, Right
Column: Non-automated users
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Short-Term Load Forecasting Thank You!

The End
Questions?
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