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Abstract—Residential Demand Response has emerged as an
instrument of the modern smart grid to alleviate supply and
demand imbalances of electricity. Utilizing their flexibility of
electricity demand, residential households are offered monetary
incentives to temporarily reduce energy consumption during
times when the grid is strained due to a supply shortage. In
this paper, we estimate the magnitude of reductions of 1,025
residential households in California, serviced by the three main
utilities PG&E, SDG&E, and SCE, using time-series regression
on hourly smart meter data. By predicting the counterfactual
consumption during Demand Response periods, which is the
hypothetical consumption had there been no intervention, we
find a user-averaged reduction of 0.12 kWh (8.6% of the mean
consumption) per hour. The reduction is heterogeneous on a
temporal and geographic level, as we find the largest reductions
to occur in the early afternoon and early evening, as well as
a positive correlation with ambient air temperature. Further,
our findings suggest that households with automated smart-home
devices, which can be automatically shut off during Demand
Response periods, show a larger percentage reduction of the mean
(12%) compared to households without (8.3%).

I. INTRODUCTION

Following the 1970s energy crisis, programs for demand-
side management (DSM) were introduced on a global scale.
Such programs seek to temporarily reduce consumers’ electric-
ity demand through financial incentive schemes during periods
of electricity supply shortage. These programs are enabled by
the integration of information and communications technology
in the electric grid, characterizing the smart grid.

Energy supply is highly inelastic due to the slowness of
power plants’ output adjustment, which causes small increases
and decreases in demand to result in a price boom or bust,
respectively. This issue is exacerbated by the variable nature
of electricity demand (mainly influenced by ambient temper-
atures [1]), prohibitively costly energy storage, and steady
growth of renewable - and volatile - electricity generation.
Despite the fact that electric utilities and generating compa-
nies hedge against such price fluctuations through long-term
contracts, a large portion of electricity remains to be procured
through the wholesale electricity market. Since utilities are
obligated to serve end-users with electricity at a quasi-fixed
tariff at all times, e.g. Time-of-Use pricing, they have to bear
price risks in a volatile market. Therefore, DSM to reduce
demand during peak periods is also an attempt to protect
utilities against such price risks by partially relaying them to
end-users, which increases market efficiency according to the
economic consensus [2].

DSM describes a set of interventions aiming to affect
customer behavior on different scales of application and time
[3]. In this paper, we focus on individual households and short-
term behavioral interventions during hours of peak demand
or shortages of electricity supply, when demand reductions
can counteract high electricity prices reflected by Locational
Marginal Prices (LMPs) [4].

The California Public Utilities Commission (CPUC) has
launched a Demand Response Auction Mechanism (DRAM)
in July 2015 [5] which requires utilities to procure a min-
imum monthly amount of reduction capacity from Demand
Response (DR) aggregators. The real-time market determines
electricity prices by matching demand and utilities’ supply
curves subject to the procured capacity. A utility whose
bid is cleared then asks the DR provider to incentivize its
customers to temporarily reduce their consumption relative to
their projected consumption without intervention. This is the
counterfactual, referred to in this context as baseline, based on
which compensations for (non-)fulfilled reductions are settled:
If the consumer uses less (more) energy than the baseline,
she receives a reward (incurs a penalty). In a similar fashion,
if the aggregator falls short of delivering the promised load
reduction, it incurs a penalty. For a profit-maximizing bid, the
DR provider needs to estimate the counterfactual consumption
as precisely as possible, among other aspects such as the LMP
and the elasticity of users’ demand in response to incentives.

We remark that the estimation of the actually delivered
reduction, both on the household and aggregation level, is
arguably the most critical component of the DR bidding
process. If the reductions are estimated with a biased coun-
terfactual, either the DR provider or the utility clearing the
bids is systematically discriminated against. If the baseline is
unbiased but plagued by high variance, the profit settlement is
highly volatile. Existing baselines employed by major power
grid operators in the United States (e.g. California Independent
System Operator (CAISO), New York ISO) are calculated with
simple arithmetic averages of previous observations [6] and
therefore are inaccurate. Improving on such baselines by using
more accurate estimators, while maintaining unbiasedness, is
a central contribution of this paper.

A. Contributions

In this paper, we estimate the causal effect of a residential
DR program in California on the reduction of electricity
consumption of 1025 individual households serviced by the



three main electric utilities in California (Pacific Gas & Elec-
tric (PG&E), San Diego Gas & Electric (SDG&E), Southern
California Edison (SC&E)). The observational data is provided
by the company OhmConnect, Inc. [7], headquartered
in the San Francisco Bay Area, and is being held under a
confidentiality agreement. We find an average reduction of
8.6% of the mean consumption and a 78.6% response rate
to DR (users who reduced consumption) using the Hodges-
Lehmann-Estimator. Further, we discover notable geographic
and temporal heterogeneity among users. That is, the largest
estimated reductions occur during early afternoon hours and
early evenings, as well as in regions with warmer climate, sug-
gesting that air conditioning units play a decisive role in DR
programs. Lastly, households equipped with automated, smart-
home devices that are remotely shut off during DR periods
show an interesting anomaly: Despite reducing less energy
(0.118 kWh) than households without smart devices (0.123
kWh), their relative reduction is higher (12% vs. 8.3% of mean
consumption, respectively), indicating automated households,
on average, consume less energy than non-automated ones.

B. Related Work

The rapid growth of collected user data has spurred research
at the intersection of machine learning and economics with
the goal of estimating treatment effects of an intervention in
situations where Randomized Controlled Trials (RCTs), the
experimental standard, are infeasible to conduct, e.g. due to
budget or ethical constraints. The general idea is to partition
observations under treatment and control in order to fit a
nominal model on the latter set, which, when applied on the
treatment set, yields counterfactual estimates (baselines), from
which the treatment effect is computed by subtracting out ac-
tual observed treatment outcomes. Examples for such nominal
models are found in [8], who evaluates welfare effects of home
automation by calculating the Kolmogorov-Smirnov Statistics
between users, which are then used as weights for kernel-
based non-parametric regression. In [9], a convex combination
of US states is computed as the counterfactual estimate for
tobacco consumption to estimate the effect of a tobacco
control program in California on tobacco consumption. In [10],
[11], the estimators are random forests trained by recursive
partitioning of the feature space and novel cross-validation
criteria. [12] develops Bayesian structural time series models
combined with a Monte-Carlo sampling method for treatment
effect inference of market interventions.

Fitting an estimator on smart meter time-series is essentially
a short-term load forecasting (STLF) problem, whose goal is to
fit estimators on observed data to predict future consumption
with the highest possible accuracy. Within STLF, tools em-
ployed are ARIMA models with a seasonal component [13]
and classic regression models where support vector regression
(SVR) [14] and neural networks [15] yield the highest accu-
racy. A comprehensive comparison between ML techniques
for forecasting and differing levels of load aggregation can be
found in [16].

In the context of data mining smart meter data, much of
the existing work focuses on disaggregation of energy con-
sumption to identify contributions of discrete appliances from
the total observed consumption [17], [18], and to learn con-
sumption patterns [19], [20], [21] using clustering approaches
[22]. Studies in applied economics typically emphasize the
estimation of average treatment effects of experimental inter-
ventions. To increase precision of the estimates, the employed
regression models often employ unit-level fixed effects [23]
as an implicit way of training models for the consumption of
individual consumers. In this work, we make these user-level
models explicit, allowing for more general ML techniques.
Importantly, our approach is original as it permits to perform
causal inference on the level of individual treatment effects
by employing estimators from STLF. To the best of our
knowledge, this paper is the first of its kind to analyze the
potential of Demand Response interventions on a residential
level, combining ideas at the intersection of causal inference
from econometrics and Machine Learning for estimation.

II. DEMAND RESPONSE MECHANISM

According to DRAM [5], electric utilities are obligated
to offer “demand flexibility” through Demand Response
Providers (DRPs). Utilities solicit bids from DRPs and accept
the highest ones up to a monthly target capacity. In the real-
time wholesale electricity market, the utility submits supply
bids including these acquired capacities, which, when cleared,
have to be delivered by the DRP under contract over a contrac-
tually specified period of time. The DRP does so by eliciting
reductions among a suitable chosen subset of its residential
end-use customers by offering them a monetary incentive.
Such an aggregation of users is also known as a Proxy Demand
Resource (PDR) [6] product. The DRP receives a payment
from the wholesale market for each unit of reduction up to its
original capacity bid, but incurs a shortfall penalty for each
unit of unfulfilled obligation. Figure 1 illustrates the interaction
between all agents.

Wholesale Market

DR Provider
Scheduling Coordinator

Electric Utility

End-Use Customers

PDR

Fig. 1: Interactions of Agents in Residential Demand Response

We focus on the DRP-User interaction and in particular
answer the question of how to measure and quantify reductions
of end-users’ electricity consumption in response to monetary
incentives. Our data set consists of DR events of length one
hour. Specifically, users receive notifications of a DR event up
to 20 minutes into an hour, which lasts until the end of the
hour. Further, users were compensated proportional to their
reductions, which, however, was revealed to them only after
the end of the DR event. The effect we are hence analyzing is



the impact of notifying users of a DR event on the reduction
of electricity consumption.

III. TREATMENT EFFECT ESTIMATION

A. Potential Outcomes Framework

To estimate the effect of the DR intervention program, we
adopt the potential outcomes framework introduced by Rubin
(1974) [24]. Let I = {1, . . . , n} denote the set of users. The
indicator Dit ∈ {0, 1} encodes the fact whether or not user i
received DR treatment at time t. Each user is endowed with a
consumption time series yi = {yi1, . . . , yiτ} and associated
covariates Xi = {xi1, . . . ,xiτ} ∈ ×τi=1Xi, Xi ⊂ Rnx ,
where time is indexed by t ∈ T = {1, . . . , τ} and nx is the
dimension of the covariate space Xi. Let y0it and y1it denote
user i’s electricity consumption at time t for Dit = 0 and
Dit = 1, respectively. Let Ci and Ti denote the set of control
and treatment times for user i. That is,

Ci = {t ∈ T | Dit = 0}, Ti = {t ∈ T | Dit = 1}. (1)

The number of treatment hours is much smaller than the
number of non-treatment hours. Thus 0 < |Ti|/|Ci| � 1.

Further, let Di,t and Di,c denote user i’s covariate-outcome
pairs of treatment and control times, respectively. That is,

Di,t = {(xit, yit) | t ∈ Ti}, Di,c = {(xit, yit) | t ∈ Ci}.
(2)

The one-sample estimate of the treatment effect on user i at
time t, given the covariates xit ∈ Rnx , is

βit(xit) := y1it(xit)− y0it(xit) ∀ i ∈ I, t ∈ T, (3)

which varies across time, the covariate space, and the user
population. Marginalizing this one-sample estimate over the
set of treatment times Ti and the covariate space Xi yields the
user-specific Individual Treatment Effect (ITE) βi

βi := EXi
Et∈Ti

[
y1it − y0it

∣∣∣ xit] = 1

|Ti|
∑
t∈Ti

y1it − y0it. (4)

The average treatment effect on the treated (ATT) follows from
(4):

ATT := Ei∈I [βi] =
1

|I|
∑
i∈I

1

|Ti|
∑
t∈Ti

(y1it − y0it). (5)

As we cannot rule out selection bias among users who have
chosen to subscribe to the DR program, (5) does not coincide
with the average treatment effect (ATE) [25].

Lastly, the conditional average treatment effect on the
treated (CATT) on x̃ is obtained by marginalizing the con-
ditional distribution of one-sample estimates (3) on x̃ over all
users and treatment times, where x̃ ∈ Rñx is a subvector of
x ∈ Rnx , 0 < ñx < nx:

CATT(x̃) := Ei∈IEt∈Ti
[
(y1it − y0it)

∣∣∣ x̃it = x̃
]
. (6)

The CATT captures heterogeneity among users, e.g. with
respect to specific hours of the day, the geographic distribu-
tion of users, the extent to which a user possesses “smart

home” appliances, group or peer effects, etc. To rule out
the existence of unobserved factors that could influence the
assignment mechanism generating the complete observed data
set {(xit, yit, Dit) | i ∈ I, t ∈ T}, we make the following
standard assumptions:

Assumption 1 (Unconfoundedness of Treatment Assignment).
Given the covariates {xit}t∈T, the potential outcomes are
independent of treatment assignment:

(y0it, y
1
it) ⊥ Dit | xit ∀i ∈ I, t ∈ T. (7)

Assumption 2 (Stationarity of Potential Outcomes). Given the
covariates {xit}t∈T, the potential outcomes are independent
of time, that is,

(y0it, y
1
it) ⊥ t | xit ∀i ∈ I, t ∈ T. (8)

Assumption 1 is the “ignorable treatment assignment” as-
sumption introduced by Rosenbaum and Rubin [26]. Under
this assumption, the assignment of DR treatment to users is
implemented in a randomized fashion, which allows the cal-
culation of unbiased ATTs (5) and CATTs (6). Assumption 2,
motivated by the time-series nature of the observational data,
ensures that the set of observable covariates {xit | t ∈ T} can
capture seasonality effects in the estimation of the potential
outcomes. That is, the conditional distribution of the potential
outcomes, given covariates, remains constant.

The fundamental problem of causal inference [27] refers
to the fact that either the treatment or the control outcome
can be observed, but never both (granted there are no missing
observations). That is,

yit = y0it +Dit · (y1it − y0it) ∀ t ∈ T. (9)

Thus, the ITE (4) is not identified because one and only one
of both potential outcomes is observed, namely {y1it | t ∈ Ti}
for the treatment times and {y0it | t ∈ Ci} for the control times.
It therefore becomes necessary to estimate counterfactuals.
Consider the following model for the estimation of such
counterfactuals:

yit = fi(xit) +Dit · βit(xit) + εit, (10)

where εit denotes noise uncorrelated with covariates and
treatment assignment. The conditional mean function fi(·) :
Rnx 7→ R pertains to Dit = 0. To obtain an estimate for
fi(·), denoted with f̂i(·), control outcomes {y0it | t ∈ Ci} are
first regressed on their observable covariates {xit | t ∈ Ci}.
In a second step, the counterfactual ŷ0it for any t ∈ Ti can
be estimated by evaluating f̂i(·) on its respective covariate
vector xit. Finally, subtracting ŷ0it from y1it isolates the one-
sample estimate βit(xit), from which the user-specific ITE
(4) can be estimated. Figure 2 illustrates this process of
estimating the reduction during a DR event by subtracting
the actual consumption y1it from the predicted counterfactual
ŷ0it = f̂i(xit). Despite the fact that consumption can be
predicted for horizons longer than a single hour, we restrict
our estimators fi(·) to a single hour prediction horizon.
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Fig. 2: Estimation of the Counterfactual ŷ0it using Treatment Covariates xit

and Predicted Reduction ŷ0it − y1it

To estimate the conditional mean function fi(·), we use
the following, classical regression methods [28], referred to
as estimators:
E1: Ordinary Least Squares Regression (OLS)
E2: L1 Regularized (LASSO) Linear Regression (L1)
E3: L2 Regularized (Ridge) Linear Regression (L2)
E4: k-Nearest Neighbors Regression (KNN)
E5: Decision Tree Regression (DT)
E6: Random Forest Regression (RF)
DT (E5) and RF (E6) follow the procedure of Classification
and Regression Trees [29]. We compare estimators (E1)-(E6)
to the CAISO 10-in-10 Baseline (BL) [6], which, for any given
hour on a weekday, is calculated as the mean of the hourly
consumptions on the 10 most recent business days during the
selected hour. For weekend days and holidays, the mean of the
4 most recent observations is calculated. This BL is further
adjusted with a Load Point Adjustment, which corrects the BL
by a factor proportional to the consumption three hours prior
to a DR event, excluding the hour immediately prior to the
event.

B. Nonparametric Signed Rank Test

Rather than naively computing the differences in means
between the treatment observations {y1it | t ∈ Ti} and their
estimated counterfactuals {ŷ0it | t ∈ Ti}, a nonparametric
comparison between these sets admits p-values and cover-
age probabilities for confidence intervals without requiring
assumptions on the underlying data generating process, while
being robust against outliers. The paired replicate nature
of these sets as well as their relatively small size (which
precludes the use of the Central Limit Theorem) calls for
an analysis using signed ranks [30]. We estimate ITEs with
the Hodges-Lehmann Estimator (HLM) that is associated with
the Wilcoxon Signed Rank Statistic. The Hodges-Lehmann
Estimator is intrinsically related to the Wilcoxon Signed Rank
Test with null hypothesis and its corresponding alternative

H0 : βi = 0, (11a)
H1 : βi 6= 0, (11b)

which constitutes a two-sided test at significance level α.
The confidence interval [θi, θi] admitted by the Wilcoxon

Signed Rank Test corresponds to the range of β̃i for which it
does not reject the modified null hypothesis H0 : β = β̃i with
corresponding alternative H1 : β 6= β̃i at significance level α.
Thus, (11a) is rejected at confidence level 1− α if
• β

i
≤ βi < 0: (11a) is rejected at the lower tail (that is,

user i reduces consumption significantly), or
• 0 < β

i
≤ βi: (11a) is rejected at the upper tail (that is,

user i increases consumption significantly).

IV. DATA AND DATA PREPARATION

A. Aggregate Statistics

Our data set consists of |I| = 5000 residential customers in
California serviced by the three largest investor owned utilities
(PG&E, SCE, and SDG&E). For each user, we have its ZIP
code, hourly smart meter time series data of varying lengths,
and timestamps of hourly DR events. Figure 3 shows the
geographic distribution of users across California. To train

Geographic Distribution of Users

PGE: 1614 Users

SCE: 798 Users

SDGE: 554 Users

Fig. 3: Geographic Distribution of Users
estimators (E1)-(E6) on non-DR periods, sufficiently long
historical consumption data is required, and so we drop all
users with less than seven months of data. Further, users with
net energy metering (NEM) tariffs (due to rooftop solar panels)
are removed. After these operations, 1025 users remain, with a
subset of 83 users that owns at least one “smart home” device
which can be remotely shut off by the DR provider, given the
users’ approval to do so. Devices include thermostats (Nest,
Honeywell, Schneider Electric Wiser, Ecobee)
and smart plugs (TP-Link).

B. Data Preprocessing

Hourly measurements of ambient air temperature are
scraped from the publicly accessible California Irrigation
Management Information System (CIMIS) [31]. As there are
fewer weather stations than distinct user ZIP codes, we linearly
interpolate user-specific temperatures at their ZIP codes from



the two closest weather stations in latitude and longitude by
calculating geodesic distances with Vincenty’s formulae [32].

Moreover, since users tend to exhibit a temporary increase
in consumption in the hours following the DR intervention [3],
we remove nr = 10 hourly observations following each DR
event in order to prevent estimators (E1)-(E6) from learning
from such spillover effects.

For each user, the cleaned hourly consumption time series
is then split into the following two sets:

1) Di,t, the set of treatment data;
2) Di,c = Di,tr ∪ Di,pl ∪ Di,syn, the set of control data;

• Di,tr ⊂ Di,c, the training data set;
• Di,pl ⊂ Di,c, the placebo treatment data set;
• Di,syn ⊂ Di,c, the synthetic treatment data set,

where 1% each of Di,c are randomly allocated to Di,pl and
Di,syn according to the empirical distribution of DR events,
which is depicted in Figure 4. Let Si and Pi denote the ensuing
sets of user i’s synthetic treatment and placebo treatment
times, respectively. The remaining 98% of Di,c are allocated to
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Fig. 4: Distribution of DR Events Across Hours of the Day
the training set Di,tr, on which outcome estimators (E1)-(E6)
are fitted.

1) Placebo Treatments: The placebo treatment set Di,pl is
used to test the accuracy and unbiasedness of estimators (E1)-
(E6) by creating treatment outcomes {y1it | t ∈ Pi} with a zero
treatment effect (hence the name “placebo treatment”). These
outcomes are to be recovered by the counterfactual estimates
{ŷ0it | t ∈ Pi}. The one-sample estimation errors

{ŷ0it − y1it | t ∈ Pi} (12)

of an unbiased estimator should be centered around zero. The
more accurate the estimator, the lower we expect the sample
variance of (12) to become.

2) Synthetic Treatments: The synthetic treatment set Di,syn
is used as a set of ground truth counterfactuals {y0it | t ∈ Si}
for which treatment outcomes {y1it | t ∈ Si} are synthetically
generated. We assume a constant ITE (4), −1 ≤ β1 = . . . =
βN =: β ≤ 0, across all synthetic times and the covariate
space for each user i, as a percentage of user i’s mean
counterfactual consumption. The one-sample reductions (3)
are varied around the mean reduction through Gaussian noise
with an appropriate standard deviation:

µi :=
1

|Si|
∑
t∈Si

y0it, (13a)

y1it ← y0it + βit, βit ∼ N (βµi, σ
2) ∀ t ∈ Si. (13b)

Since βit is random in σ2, the realized ITE βi is distributed ac-
cording to βi ∼ N (β, σ2/(µ2

i |Si|)), which follows from (13b)

and noting that {yit}t∈Si are independent random variables.
Using this semi-synthetic treatment data, one can evaluate the
ability of the estimators to recover the generated ITE βµi (non-
normalized) and β (normalized). The sample variance of the
ITE estimation errors will again serve as a measure for the
predictive power of an estimator, similar to the estimation error
of placebo treatments.

3) Training of Estimators: The training data Di,tr is used
to estimate the conditional mean function f̂i(·) (10) of models
(E1)-(E6) with standard k-fold cross-validation on the follow-
ing covariates:
• Hour of the day, day of the week, and month of the year

as categorical variables,
• Previous nar = 5 hourly measurements of ambient air

temperature, and
• yi,t−nar:t−1 := {yi,t−nar

, . . . , yi,t−1}, i.e. the previous
nar hourly consumption values.

Observations for which the autoregressive term yi,t−nar:t−1
does not exist are dropped from the data set. More specifically,
for any two treatment observations yit and yit̃, t̃ > t, we must
have that t̃ − t > nar + nr, i.e. we only include treatment
observations which are separated by at least nar + nr non-
treatment hours. For the choice nar = 5 and nr = 10, which
we stick to throughout this paper, this requirement is fulfilled
for more than 97% of all DR events. To reduce the propagation
of model bias into the estimation of treatment effects, we
empirically de-bias estimators by subtracting the empirical
bias, which is the difference in means between the observed
control outcomes and their predictions, from all estimated
counterfactuals:

ŷ0it ← ŷ0it −
1

|Ci|
∑
k∈Ci

(ŷ0ik − y0ik) ∀ t ∈ Ti. (14)

Although (14) leads to an increase of variance of counter-
factual estimates, the reasoning behind this operation is that
an unbiased estimator provides a fair economic settlement
for DR reductions. If the estimator were biased in favor of
the consumer, then the user, in expectation, would receive
an additional payment proportional to the bias each time a
DR event is called despite not having actually reduced his
consumption by the amount of bias. Likewise, an estimator
biased in favor of the utility results in the opposite effect.

V. SIMULATION RESULTS

A. Results on Control Data

1) One-Sample Predictions: Table I provides the sample
bias and standard deviation of the distribution of one-sample
prediction errors (12) on the placebo treatment set. It becomes
clear that RF outperforms all other estimators as it is has
the smallest sample standard deviation. The performance of
L1, L2, and OLS are similar to each other, yet worse then
RF, indicating that the training data is of sufficient size such
that overfitting is not a concern. The performance of KNN
lies between L1/L2/OLS and BL. The CAISO BL performs
worst. As the estimators were calibrated with the de-biasing



Sample Mean and Variance on Placebo Treatment Set Di,pl

Method Bias St. Dev. median MAPE [%]
RF 0.00280 0.34460 30.779

OLS 0.00157 0.35981 35.088
L1 0.00184 0.35969 34.945
L2 0.00153 0.35977 35.079
DT −8.26e-05 0.40386 35.461

KNN −0.00129 0.41011 41.341
BL 0.00684 0.49550 50.496

TABLE I: MAPE, Sample Bias and Standard Deviation of Placebo Predictions
for Estimators (E1)-(E6) and BL

operation (14), the one-sample estimation errors (whose mean
is the bias) for all estimators varies insignificantly around
zero. Table I also provides the median of the set of Mean
Absolute Percentage Errors (MAPE) across all users and for
all estimators (E1)-(E6). The MAPE for a given user i is

MAPE =
1

|Vi|
∑
t∈Vi

∣∣∣∣∣ f̂i(xit)− y0ity0it

∣∣∣∣∣ · 100%, (15)

where Vi ⊂ Ci is a subset of the set of training times used
for validation of the estimators during the training step. Using
standard k-fold cross validation on the training data set Di,tr
(i.e. we chose k = 10), Vi can be interpreted as the set of
time indices in the holdout set of any given fold.

2) Estimation of ITEs: Figure 5 shows the distribution of
estimated normalized ITEs {β̂i}i∈I generated in (13a) and
(13b) across all users, for selected estimators, and for two
different ground truth ITEs βi ∈ {−0.01,−0.15}. Each ITE
draw is obtained from a randomly drawn subset Mi ⊂ Si,
where we chose |Mi| = 25. As in Table I, RF outperforms

−0.4 −0.2 0.0 0.2 0.4
0

20

40

RF

β =-0.15, GT

β =-0.15, est.

β =-0.01, GT

β =-0.01, est.

−0.4 −0.2 0.0 0.2 0.4
0

20

40

L1

−0.4 −0.2 0.0 0.2 0.4
0

20

40

KNN

−0.4 −0.2 0.0 0.2 0.4

Relative Reduction (ITE)

0

20

40

C
ou

nt

BL

Ground Truth (GT) ITEs vs. Estimated ITEs on Semisynthetic Data

Fig. 5: Distribution of ITE Estimates Across Users and Estimators (E6), (E2),
(E4), and CAISO BL. Green: βi = −0.15 · µi, Blue: βi = −0.01 · µi.
estimators (E1)-(E5) and BL, as the histograms around the

sample mean become wider as we move to the more inaccurate
estimators towards the bottom of the figure.

3) Economic Implications: From an economic perspective,
the following misclassification errors are costly:
• If y0it > y1it, but ŷ0it < y1it is predicted, user i receives no

credit despite having actually reduced consumption.
• Conversely, if y0it < y1it, but ŷ0it > y1it is predicted, user i

is over-credited despite an increase in consumption.
To quantify these errors, we calculate the population-wide
conditional means of estimated reductions (increases) on the
synthetic treatment set, denoted with µ↓↑ and µ↑↓, respectively,
given that the user actually increased (reduced):

µ↓↑ =

∑
i∈I
∑
t∈Si(ŷ

0
it − y1it) · 1ŷ0it>y1it · 1y1it>y0it∑

i∈I
∑
t∈Si 1ŷ0it>y1it · 1y1it>y0it

, (16a)

µ↑↓ =

∑
i∈I
∑
t∈Si(y

1
it − ŷ0it) · 1y1it>ŷ0it · 1y0it>y1it∑

i∈I
∑
t∈Si 1y1it>ŷ0it · 1y0it>y1it

. (16b)

Let ↓↑ and ↑↓ denote the population-wide percentage of cases
where a user is falsely given credit (not given credit) despite
having increased (decreased) consumption:

↓↑ =
∑
i∈I
∑
t∈Si 1ŷ0it>y1it · 1y1it>y0it∑

i∈I |Si|
, (17a)

↑↓ =
∑
i∈I
∑
t∈Si 1y1it>ŷ0it · 1y0it>y1it∑

i∈I |Si|
. (17b)

We define the misclassification score R as the sum of con-
ditional means of falsely estimated reductions (increases)
(16a),(16b) multiplied by the percentage these cases occur,
i.e. R =↓↑ ·µ↓↑+ ↑↓ ·µ↑↓. R is interpreted as the amount
of falsely allocated credit per DR event and user due to
estimation errors. Table II reports these metrics for a ground
truth ATT of β = 0.01. As expected, RF achieves the lowest
misclassification score, namely about 38% less than BL.

Misclassifications of Estimators for ATT β = 0.01

↓↑ ↑↓ ↓↑ + ↑↓ µ↓↑ µ↑↓ R
RF .109 .213 .322 .153 .408 .1036

OLS .122 .215 .337 .153 .435 .1122
L1 .123 .222 .345 .143 .444 .1162
L2 .122 .215 .337 .153 .435 .1122
DT .098 .244 .342 .175 .416 .1187

KNN .126 .247 .373 .209 .462 .1404
BL .119 .236 .355 .241 .584 .1665

TABLE II: Misclassification Table for (E1)-(E6) and CAISO BL

B. Analysis of Observational Data

Since the Random Forest estimator (E6) has shown the
highest accuracy among estimators (E1)-(E6) and in particular
the CAISO BL, we restrict our analysis to this estimator in
the remainder of the paper. Figure 7 shows Hodges-Lehmann
estimates for the ITEs of those 515 users with at least 10 DR
events together with their confidence intervals based on RF
predictions. A subset of 43 users has at least one automated
smart home device, for which the confidence intervals in
Figure 7 are drawn in yellow.

At confidence level 1 − α = 0.9, 78.6% of all users are
estimated to reduce their consumption, with 32.8% of the total
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population reducing significantly. The remaining users have
increased their consumption, with 1.5% of the total population
having done so significantly. These are likely random artifacts
- note that we expect 5% under the null hypothesis (11a) and
at 90% confidence level.

1) Influence of Automation: Let Ai denote user i’s number
of automated “smart home” devices. Conditioning the ATT
on the indicator whether or not a user has at least one
automated device yields the CATT by automation status.
Table III provides these CATT estimates. While the absolute
reduction among A ≥ 1 and A = 0 is similar in magnitude,
their percentage reductions differ, indicating that automated
users are more energy efficient to begin with. There is no
notable difference in the estimated percentage of reducers.

ATT and CATTs by Automation Status
CATT/ATT (C)ATT on reducers

kWh % of mean kWh % of mean % reducers
All -0.123 -8.59 -0.190 -15.3 78.6

A ≥ 1 -0.118 -12.0 -0.173 -22.1 81.4
A = 0 -0.123 -8.28 -0.189 -14.6 78.4

TABLE III: CATT Estimates on 43 Automated and 472 Non-Automated Users
with at least 10 DR Events

2) Heterogeneity in Time: Figure 6 shows the range of
observed consumptions between the first and last DR event
across all users for control periods and the estimated CATTs
by different hours of the day, where “17” denotes consumption
between 4-5 pm. The CATTs for hours 9 and 22 are smallest,
which agrees with expectations. The largest effects are found
to occur in the late afternoon and early evening, potentially
when most users are at home.

CATT [kWh] by Location, RF (300 Trees)
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3) Spatial Heterogeneity: Conditioning the ATT (5) on the
ZIP codes of users yields the CATT by location. Figure 8 plots
the location of each of the 515 users on a map of California,
where the CATT is color coded. The highest CATTs are
found in the inland areas of California (San Joaquin Valley),
which are considerably warmer than the coastal areas. The



positive correlation with ambient air temperature is supported
also by Figure 9, which scatter plots the HLM estimates
of ITEs against the average ambient air temperature during
DR events. A simple t-Test on the paired ITE-temperature
samples computes a p-value of 2.1e-11 for the null hypothesis
H0 : ITE and temperature are uncorrelated. This observation
suggests a considerable impact of air conditioning units on the
quantity of reduction during DR events.

VI. CONCLUSION

This paper estimates treatment effects of a residential De-
mand Response program on the reduction of energy consump-
tion, using observational data provided by OhmConnect,
Inc [7]. The Hodges-Lehmann Estimator in combination with
the Wilcoxon Signed Rank Test is employed to construct non-
parametric estimates and confidence intervals for reductions
during DR events. Estimating the counterfactual consumption
with classical Machine Learning regression methods, in partic-
ular Random Forest Regression, allows for a considerable im-
provement in predictive accuracy compared to the regulatory
baselining standard set by the California Independent System
Operator. By simulating users’ responses on observed time
series, it is shown that the Random Forest regressor reduces
the extent of misclassifications in DR settlements compared
to the CAISO baseline. An average treatment effect of −0.12
kWh per DR event and user is estimated across all treated
users, which amounts to an 8.6% reduction from the mean
consumption. 78.6% of the treatment population is estimated
to respond to incentives by reducing consumption.

We further detect significant heterogeneity in time, automa-
tion status, and a positive correlation between the magnitude
of reduction and ambient air temperature. To achieve external
validity of the non-experimental treatment effect estimates pro-
posed in this paper, we are currently conducting a Randomized
Controlled Trial on more than 10,000 users in California. The
DR events in this experiment include reward levels that are
communicated to the users, which allows for an estimation
of a demand curve. Lastly, we intend to investigate the wel-
fare impact of Demand Response on end-users of electricity
under a broader array of incentives, including non-monetary
incentives and social comparisons.
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