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Abstract— Commercial buildings are responsible for a large
fraction of energy consumption in developed countries, and
therefore are targets of energy efficiency programs. Motivated
by the large inherent thermal inertia of buildings, the power
consumption can be flexibly scheduled without compromising
occupant comfort. This temporal flexibility offers opportunities
for energy savings and the provision of frequency regulation
to support grid stability. To realize these goals, it is of prime
importance to identify a realistic model for the temperature
dynamics of a building. In this paper, we identify a low-
dimensional data-driven model and a high-dimensional physics-
based model for the same system at different spatial granular-
ities and temporal seasons using experimental data collected
from an entire floor of an office building on the University
of California, Berkeley campus. We perform a quantitative
comparison in terms of estimates of the inherent thermal gains
due to occupancy, open-loop prediction accuracies, and closed-
loop control schemes. We conclude that data-driven models
could serve as a substitution for highly complex physics-based
models with an insignificant loss of prediction accuracy for
many applications.

I. INTRODUCTION

According to [1], residential and commercial buildings
account for up to 40% of the total electricity consumption
in developed countries, with an upward trend. Heating,
ventilation and air-conditioning (HVAC) systems are a major
source of this consumption [2]. Nevertheless, their power
consumption can be flexibly scheduled without compromi-
sing occupant comfort, due to the thermal capacity of build-
ings. As a result, HVAC systems have become the focal
point of research, with the goal of utilizing this source of
consumption flexibility. From the point of view of energy
efficiency, researchers have studied optimization of building
control in order to minimize power consumption [3], [4].
Further, by participating in the regulation of electricity’s
frequency, buildings can assist in supporting the supply
quality of electricity and the grid stability [5], [6], [7], [8].

All of the above research activities are based on a valid
mathematical model describing the thermal behavior of
buildings. Traditionally, buildings have been modeled with
high-dimensional physics-based models such as resistance-
capacitance (RC) models [9], [10], TRNSYS [11], and En-
ergyPlus [12]. These models are motivated by the thermody-
namics of the building and explicitly model the heat transfer

Department of Mechanical Engineering, University of California, Berke-
ley, USA. datong.zhou@berkeley.edu

Dept. of El. Engineering and Computer Sciences, University of California,
Berkeley, USA. [qiehu, tomlin]@eecs.berkeley.edu

This work is supported in part by NSF under CPS:ActionWebs (CNS-
0931843) and CPS:FORCES (CNS-1239166).

*These authors contributed equally.

between building components. The advantage of such models
is their high granularity of temperature modeling, but a
drawback is their high dimensionality, rendering them com-
putationally expensive. A large body of this work focuses on
linear models, whereas physics-based models for commercial
buildings with a variable air volume (VAV) HVAC system
are bilinear in nature. Furthermore, existing model reduction
techniques often result in a loss of interpretability of states
[13] and disproportionate increase in the model’s prediction
error [14].

Motivated by these shortcomings, a new direction of
research attempts to identify low-dimensional, data-driven
models with Input-Output models [7] and semiparametric
regression [15]. The intention is to alleviate the computa-
tional complexity in expense for coarser and less accurate
temperature predictions.

The contribution of this paper is two-fold. First, we aim to
improve existing data-driven model identification techniques.
Unlike [16], [17], who model the evolution of the building’s
energy consumption without a specific control input, we
identify a model for temperature evolution in multiple build-
ing zones amenable to control design, i.e. with airflows as
inputs. Our model also differs from [15], which uses HVAC
supply air temperature as the single control input, resulting
in a simpler identification problem, but, on the other hand,
offers less flexibility for control.

Second, and more importantly, we perform a quantita-
tive comparison of data-driven and physics-based models
in terms of open-loop prediction accuracy and closed-loop
control strategies, based on the same testbed (the entire floor
of an office building) using experimental data collected from
the building, as opposed to simulated data. We conclude that
a low-dimensional data-driven model is suitable for building
control applications, such as frequency regulation, due to
its minor loss of prediction accuracy compared to high-
dimensional physics-based models, but significant gain in
computational ease. To the best of our knowledge, the extant
body of literature has analyzed data-driven and physical
models for the identification of temperature evolution in com-
mercial buildings only in an isolated fashion (in particular
not on the same testbed), [3], [18]. In addition, some of these
models were identified for fictitious buildings with synthetic
data [19], [20], while others used experimental data collected
under environments with little or no disturbance, e.g. without
occupants [7]. Our work differs from these existing works
in two aspects. First, we use experimental data to identify
models for a multi-zone commercial building under regular
operation, which is subject to significant disturbances such



as occupancy. Second, although the existing literature men-
tions the differences between data-driven and physics-based
models, the prevailing isolationist approach does not provide
any quantitative comparison with respect to building control
applications - a gap we aim to fill by juxtaposing a data-
driven with a physics-based model.

The remainder of this paper is organized as follows: In
Section II, we describe the testbed and the experimental
data. Section III presents the identification process for a
purely data-driven model with semiparametric regression,
followed by Section IV, which details the procedure for
identifying a physics-based model. Section V then compares
the performance of both models in terms of open-loop
prediction accuracy and closed-loop energy efficient optimal
control. We show that, despite the higher accuracy of the
complex physics-based model, the optimal control strategies
with respect to HVAC operation cost while maintaining the
thermal comfort of occupants is almost identical for both
systems. Section VI concludes.

II. PRELIMINARIES

A. Testbed for System Identification

We model the temperature evolution of the fourth floor
of Sutardja Dai Hall (SDH), a building on the University
of California, Berkeley campus. This floor contains offices
for research staff and open workspaces for students, and is
divided into six zones for modeling purposes (Figure 1).

SDH is equipped with a variable air volume (VAV) HVAC
system, which consists of large supply fans driving air
through heat exchangers, cooling it down to a desired supply
air temperature (SAT), and then distribute air to VAV boxes
located throughout the building. There are 21 VAV boxes
located on the fourth floor that govern the airflow to each
room. In addition, the supply air may be reheated at the VAV
box before entering the room.

Fig. 1: Zones for the 4th Floor of Sutardja Dai Hall (SDH)

B. Collection of Experimental Data

We collected 51 weeks of one-minute resolution tempera-
ture data for the six zones along with the airflow rates of the
21 VAV boxes, SAT, and the outside air temperature. The
hourly global horizontal solar radiation data was obtained
from a nearby weather station [21], from which the inci-
dence solar radiation of the four geographic directions was
calculated with the PV LIB toolbox [22]. All collected data
were down-sampled or interpolated to 15 minute intervals.

These 51 weeks of data span periods of normal operation
as well as excitation experiments, which were performed
in order to increase identifiability of the building model.

These experiments were conducted during Saturdays to (a)
minimize effects due to occupancy on our collected data,
and thus facilitate subsequent parameter identification, (b) to
minimize impact on building operation, and (c) to exploit
larger comfort bounds on room temperatures during week-
end days. Indeed, the comfort bounds were never violated
during the forced experiments. Details on the design of our
excitation experiments can be found in [18].

C. Data Splitting

Next, we defined the seasons “fall” (early September -
mid December), “winter” (mid December - late January), and
“spring” (late January - mid May) to account for different
occupancy levels during the fall and spring semesters and the
winter break. A 90%-10% random split into training and test
data was used for fitting and testing the models, respectively.

III. DATA-DRIVEN MODEL

Using semiparametric regression, we identify a difference
equation for the temperature evolution, for a lumped zone
model and a multi-zone model of the fourth floor of SDH.
Semiparametric regression in buildings has been proposed
by [15], where the authors used only one week of historic
data to model the temperature evolution and used the HVAC’s
supply air temperature as the single control input. We extend
this approach by taking into account multiple weeks, which
we separate into three seasons (fall, winter, spring) so as
to characterize the different levels of the exogenous heating
load for different temporal seasons. In addition, we model
the room temperatures as a function of airflow rates from
multiple VAVs to obtain a model which can be used for
more sophisticated control strategies.

A. Lumped Zone

1) Model Setup: In order to facilitate analysis, the entire
4th floor of SDH is treated as a single zone, with the scalar
temperature x corresponding to the average temperature on
the entire floor and the input u as the sum of the inflow of all
21 VAV boxes. Then, the temperature evolution is assumed
to have the following form:

x(k + 1) = ax(k) + bu(k) + c>v(k) + qIG(k) + ε(k), (1)

where v := [vTa, vTs, vsolE, vsolN, vsolS, vsolW]
> is a vector of

known disturbances that describes ambient air temperature,
the HVAC system’s supply air temperature, and solar radia-
tion from each of the four geographic directions. In addition,
qIG represents the internal gains due to occupancy and
electric devices, and ε denotes independent and identically
distributed zero mean noise with constant and finite variance
which is conditionally independent of x, u, v, and qIG.
Finally, a, b ∈ R and c ∈ R6 are unknown coefficients to be
estimated using semiparametric regression [23].

2) Smoothing of Time Series: The qIG term of Equation
(1) is treated as a nonparametric term, so that (1) becomes
a partially linear model [24]. By taking conditional expecta-
tions on both sides of (1), we obtain



x̂(k + 1) = ax̂(k) + bû(k) + c>v̂(k)

+ E [qIG(k)|k] + E [ε(k)|k] ,
(2)

where the conditional expectations x̂(·) = E [x(·)|·], û(·) =
E [u(·)|·], and v̂(·) = E [v(·)|·] are used. Noting that
E [ε(·)|·] = 0 and assuming E [qIG(·)|·] = qIG(·), subtracting
(2) from (1) gives

x(k + 1)− x̂(k + 1) = a (x(k)− x̂(k))

+b (u(k)− û(k)) + c> (v(k)− v̂(k)) + ε(k).
(3)

The unknown internal gains term has been eliminated, and
thus the coefficients a, b, c in (3) can be estimated with any
regression method. The conditional expectations x̂(·), û(·)
and v̂(·) are obtained by smoothing the respective time series
[15]. We made use of locally weighted linear regression
with a tricube weight function, where we use k-fold cross-
validation to determine the optimal kernel width. The error
measure used for in-sample estimates is the Root Mean
Squared (RMS) Error between the measured temperatures
x̄(k) and the model’s predicted temperatures x(k) over a
time horizon of N steps (e.g. we chose 24 hours, N = 96):

RMS error =

(
1

N

∑N
k=1 [x̄(k)− x(k)]

2

)1/2

. (4)

3) Bayesian Constrained Least Squares: A major chal-
lenge in identifying the model is that commercial buildings
are often insufficiently excited. For example, SDH’s room
temperatures under regular operation only vary within a
range of 2◦C whereas inflow of the VAV boxes hardly
varies at all. To overcome this, forced response experiments
(Section II-B) were conducted to compensate for the lack of
excitation. Further, we use Bayesian regression, which allows
prior knowledge of the building physics to be incorporated
in the identification of coefficients. Specifically, Gaussian
prior distributions are used for the coefficients a and b,
i.e., a ∼ N (µa,Σa) and b ∼ N (µb,Σb), where N (µ,Σ)
denotes a jointly Gaussian distribution with mean µ and
covariance matrix Σ. In addition, a, b and c are constrained
to be identical for the different seasons, since they model the
underlying physics of the building which are assumed to be
invariant throughout the year.

Let T = {1, 2, · · · , N} denote N weeks of training data
and F = {i ∈ T such that i is a week in fall} the set of
training weeks from the fall season. Similarly, define the
sets of training weeks from the winter and spring as W and
S. The coefficient identification problem reads as follows:

(â, b̂, ĉ) = arg min
a,b,c

(JF + JW + JS) + ‖Σ−1/2a (a− µa)‖2

+ ‖Σ−1/2b (b− µb)‖2

s.t. JX =
∑
i∈X ‖xi(k + 1)− x̂i(k + 1)− a (xi(k)− x̂i(k))

− b (ui(k)− ûi(k))− c> (vi(k)− v̂i(k)) ‖2 (5)
for X ∈ {F ,W,S},
0 < a < 1, b ≤ 0, c ≥ 0.

JF , JW and JS denote the sum of squared errors between
actual and predicted temperatures for fall, winter, and spring,

respectively. The sign constraints on the parameters b and c
capture the fact that temperature correlates positively with
all components in v and negatively with VAV airflow. The
range of a is a consequence of Newton’s Law of Cooling.

To find the effect of the VAV inflow on the 15-minute
temperature evolution, we computed the 15-minute incre-
mental reductions in temperature ∆x recorded during the
excitation experiments. It is assumed that the large inflow
u dominates all other effects such that we can assume
∆x = x(k+1)−x(k) = b·u(k) for all k during the excitation
period. The estimated prior µb can then be isolated. The
prior µa was set as the optimal â identified by (5) without
the prior terms. The covariance matrices Σa and Σb were
chosen subjectively.

4) Estimation of Internal Gains: With the estimated coef-
ficients â, b̂, ĉ in hand, the internal gains qIG can be estimated
by manipulating (2):

q̂IG(k) = x̂(k + 1)−
(
âx̂(k) + b̂û(k) + ĉ>v̂(k)

)
. (6)

(6) is used to estimate an instance of the internal gains
function for each week i in the training set T . The qIG for
each season is defined as the average of estimated weekly
gains for all weeks i ∈ X and X ∈ {F ,W,S}.

5) Results: The estimated internal gains for each season
are shown in Figure 2. Observe that, for all three seasons, the
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Fig. 2: Estimated Internal Gain qIG from the Data-Driven Model by Season,
Lumped Case

internal gains exhibit a daily trend with local peaks around
the late afternoon and local minima at night. Moreover, the
amplitudes of the internal gains are considerably smaller
during weekends, suggesting a lighter occupancy. It can
further be seen that the magnitude of the internal gains
is smallest for the winter season, which is consistent with
intuition as many building occupants are absent.

Lastly, since the Bayesian Constrained Least Squares al-
gorithm (5) has identified a set of parameter estimates â, b̂, ĉ
valid for all three seasons to account for the time-invariant
physics of the building, the temperature predictions are of
the same nature for all three seasons. We thus conclude that
the inherent differences between the seasonal temperature
data are captured by the internal gains and can be compared
between the seasons on a relative level.

The identified models for the seasons X ∈ {F ,W,S}
found with (5) are

x(k + 1) = 0.80 · x(k)− 0.18 · u(k)

+ [0.0019, 0.028,0] v(k) + qIG,X (k)

= 0.80 · x(k)− 0.18 · u(k) (7)
+ 0.0019 · vTa(k) + 0.028 · vTs(k) + qIG,X (k)



The estimated effect of solar radiation on the room temper-
ature is orders of magnitude less than that of other factors
and hence can be neglected. This is in agreement with our
testbed having no windows in the South and Northeast zones,
and most of the windows are covered with blinds.

The average RMS prediction errors are 0.22◦C, 0.17◦C
and 0.23◦C for fall, winter and spring, respectively, showing
that our model predicts the temperature reasonably well.

B. Individual Zones

1) Model Setup: Rather than approximating the entire 4th
floor of SDH as a single zone, we now identify a multivariate
thermodynamic model for each of the six individual zones:

x(k + 1) = Ax(k) +Bu(k) + Cv(k) + qIG,X (k)

for X ∈ {F ,W,S},
(8)

where x, qIG,X ∈ R6, and the control input u ∈ R6 represent
the temperatures, the internal gains of each zone, and the total
air flow to each zone, respectively. In the lumped case, it was
observed that solar radiation only had a negligible effect on
the building’s thermodynamics compared to the input and
other disturbances, and thus we omit the solar radiation in
the subsequent analysis: v := [vTa, vTs]

> ∈ R2.
Inspired by Newton’s Law of Cooling, only adjacent zones

influence each other’s temperature, which defines the sparsity
pattern of the coefficient matrices that are to be estimated:

Aij =

{
6= 0, if i = j or (i, j) adjacent
0, otherwise.

(9)

The diagonal elements of A denote autoregressive terms for
zone temperatures, whereas non-diagonal elements describe
the heat exchange between adjacent rooms. The matrix B
is diagonal by definition of u. The sparsity pattern of C
is found by physical adjacency of a respective zone to an
exterior wall of a given geographic direction.

2) Model Identification: The procedure for the estimation
of the parameter matrices Â, B̂, Ĉ, and the internal gains
follows (5), but with a modified choice of the (now matrix-
valued) priors µa and µb: µb and the diagonal entries of µa
are obtained by scaling the corresponding priors from the
lumped zone case in order to account for the thermal masses
of the individual zones, which are smaller than in the lumped
case. The off-diagonal elements of µa, which represent the
heat transfer between adjacent zones, were set to a value
close to zero, according to our calculations with the heat
transfer equation q̇ = U ·A ·∆x and [25].

3) Results: Figure 3 shows the estimated internal gains for
the three seasons fall, winter, and spring for the six single
zones, computed with the smoothed time series (6). It can
be seen that the different zones exhibit different magnitudes
of internal gains, with average values of the internal gains
ranging between 1.0◦C and 3.6◦C for different zones and
seasons. Similar to the lumped zone case (Figure 2), daily
peaks of the internal gains profiles can be recognized, with
a slight decrease in magnitude on weekend days. Table I
reports the average prediction RMS error by zone and season.
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Fig. 3: Estimated Internal Gain qIG from the Data-Driven Model by Zone
and Season, Individual Case

Data-Driven Model
Season NW W S E NE C Mean

Fall 0.98 0.61 0.28 0.42 0.28 0.36 0.488
Winter 1.41 0.34 0.29 0.26 0.25 0.21 0.460
Spring 0.56 0.25 0.31 0.71 0.17 0.34 0.390

Physics-Based Model
Season NW W S E NE C Mean

Fall 0.61 0.46 0.39 0.39 0.20 0.32 0.396
Winter 0.55 0.39 0.34 0.32 0.18 0.24 0.338
Spring 0.45 0.28 0.24 0.33 0.09 0.19 0.263

TABLE I: RMS by Zone and Season for Data-Driven and Physics-Based
Models

IV. PHYSICS-BASED MODEL

We describe the physics-based modeling approach pro-
posed in [18], which obtains an RC-model using the Building
Resistance-Capacitance Modeling (BRCM) MATLAB tool-
box [26]. We re-identify the building model using the same
training dataset as used in Section III, and estimate distinct
internal gains functions for different seasons.

A. Model Setup

The physics-based model has the following form [18]:

x(k + 1) = Ax(k) +Bvv(k) +BIGfIG(k) (10a)

+
∑21
i=1

(
Bxui

x(k) +Bvui
v(k)

)
ui(k)

y(k) = Cx(k), (10b)

where state vector x ∈ R289 and y ∈ R6 represent tempera-
tures of all building elements (walls, ceilings, floors, etc.) on
the 4th floor and the average temperatures of the six zones
shown in Figure 1, respectively. u ∈ R21 denotes the airflow
rate from the 21 VAV boxes and v := [vTa, vTs]

> the vector
of known disturbances. As in the data-driven model, heat
gains due to solar radiation are omitted from the analysis.
Finally, fIG(k) : N → R6 captures internal gains in each of
the six zones on the 4th floor. For week m in the training
set T :

fIG(k) = f cIG +


fvIG,F (k), if m ∈ F ,
fvIG,W(k), if m ∈ W,

fvIG,S(k), if m ∈ S,
(11)



Fig. 4: Estimated Internal Gain fIG from the Physics-Based Model by Zone
and Season

where f cIG is an unknown constant vector representing back-
ground heat gains due to idle electric appliances. Functions
fvIG,F (·), fvIG,W(·) and fvIG,S(·) are unknown nonparametric
functions that capture the time-varying heat gain due to
occupancy and equipments in fall, winter and spring, re-
spectively. The system matrices A, Bv , BIG, Bxui

and Bvui

are functions of the window heat transmission coefficient
Uwin and convection coefficients of the interior wall γIW,
exterior wall γEW, floor γfloor, and ceiling γceil. Define γ :=[
Uwin, γIW, γEW, γfloor, γceil, f

c>
IG

]> ∈ R11, then to identify
the physics-based model, we need to estimate the parameter
vector γ as well as the functions fvIG,X (·), X ∈ {F ,W,S}.

B. Model Identification

For a fair comparison, the same data used to train and
test the data-driven model is used to train and validate the
physics-based model. The model identification process is
performed in two steps: First, the subset of the training
data collected during weekends is used to estimate the
parameters, γ. Second, the nonparametric functions fvIG,X (·)
are estimated from the complete training dataset.

1) Parameter Estimation: We first set fvIG,X (·) = 0 during
the weekend days to evaluate them at a later point. With
fvIG,X (·) = 0, (10) reduces to a purely parametric model:

x(k + 1) = Ax(k) +Bvv(k) +BIGf
c
IG

+
∑21
i=1

(
Bxui

x(k) +Bvui
v(k)

)
ui(k),

y(k) = Cx(k).

(12)

The optimal model parameters are estimated by solving the
following optimization problem:

γ̂ = arg min
γ>0

∑
m∈T

∑
k ‖ym(k, γ)− ȳm(k)‖2

s.t. ym(k, γ) and xm(k, γ) satisfy (12) with
xm(0) = xKF,m(0)

um(k) = ūm(k), vm(k) = v̄m(k) ∀ k,

(13)

where ū, v̄ and ȳ denote the measured inputs, disturbances,
and zone temperatures, respectively. In other words, we
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Fig. 5: Simulated Temperatures from the Data-Driven Model (blue), Physics-
Based Model (orange) and Actual Temperatures (green)

choose γ such that, when the model is simulated with this
set of parameter values and the measured inputs and distur-
bances, the sum of squared errors between the measured zone
temperatures and the simulated temperatures is minimized.
The initial state xm(0) is required to simulate the model,
however, not all states are measurable (e.g. wall tempera-
ture). Thus, we estimate the initial states using a Kalman
Filter xKF,m(0) and set xm(0) = xKF,m(0). Furthermore,
to compensate for the lack of sufficient excitation of the
building, physically plausible initial guesses for γ are chosen.
The optimal parameter values are similar to those reported
in [18] and hence omitted due to space limitations.

2) Estimation of fvIG(·): Let fvIG,m(·) be an instance of the
internal gains function fvIG(·) estimated for week m in the
training set. The optimal estimate for a given season, is then
defined as the the average of all estimates for that season:

f̂vIG,F (k) =
∑
m∈F f

v
IG,m(k)/‖F‖ ∀ k, (14)

where ‖F‖ represents the cardinality of set F . To estimate
fvIG,m(·) for a given week m, let x̃(k) and ỹ(k) denote
the predicted states and zone temperatures at time k, with
fvIG,w(k − 1) = 0. That is,

x̃(k) = Ax(k − 1) +Bvv(k − 1) +BIGf
c
IG

+
∑21
i=1

(
Bxui

x(k − 1) +Bvui
v(k − 1)

)
· ui(k − 1),

ỹ = Cx̃(k).

(15)

By noting x(k) = x̃(k) +BIGf
v
IG,m(k−1), fvIG,m(k−1) can

be estimated by solving (CBIG)·fvIG,m(k−1) = ȳ(k)− ỹ(k),
a set of linear equations, using Ordinary Least Squares. ȳ(k)
denotes the measured zone temperatures at time k.

C. Results

The average daily prediction RMS errors by zone and
season are reported in Table I. Figure 4 shows the estimated
temperature contribution of the internal gains for fall, winter
and spring. The zones that correspond to open workspaces
and conference rooms (“West”, “South”, “East”, “Center”)



show discernible daily peaks in their internal gains profiles
with a slight decrease during weekends. Lastly, there is little
variation in the internal gains across different seasons.

V. QUANTITATIVE COMPARISON OF BOTH MODELS

A. Prediction Accuracy

The physics-based model (Model B) is found to have
a higher prediction accuracy compared to the data-driven
model for the individual zones (Model A) presented in
Section III-B: According to Table I, the mean RMS error
for Model B across zones is 0.11◦C lower than for Model
A. This is also illustrated in Figure 5, which shows 7-
day open-loop predictions of the temperature of a randomly
selected holdout test week in the spring period, simulated
with both models initialized with the measured temperature.
To the best of our knowledge, a quantitative comparison
at this level is non-existent, as previous building models
were developed for different testbeds, fictitious buildings
or from simulated data. This paper attempts to close this
gap by providing a quantitative comparison between the
low-dimensional data-driven model and the high-dimensional
physics-based model’s prediction accuracy for the same
multi-zone commercial building under regular operation.

B. Energy Efficient Control

Next, we explore the extent to which Model A’s slightly
lower prediction accuracy affects its resulting controller’s
closed-loop performance in energy efficient control. We for-
mulate an MPC problem to find the optimal control strategy
that minimizes the cost of HVAC operation over the same
week used in Figure 5, while guaranteeing the temperature
to stay within a comfort zone [Tmin, Tmax], which we chose
as [20◦C, 22◦C] [27], and confining the control input to
the minimum and maximum airflow settings of the HVAC
system [umin, umax]:

min
u,ε

N∑
k=1

u(k)2 + ρ‖ε‖2

s.t. x(0) = x̄(0)

x(k + 1) =

{
(8), Model A
(10a), Model B

(16)

umin − ε ≤ u(k) ≤ umax + ε ∀k ∈ [0, N − 1]{
Tmin ≤ x(k) ≤ Tmax, Model A
Tmin ≤ Cx(k) ≤ Tmax, Model B (10b)

∀k ∈ [1, N ]

The temperature is initialized with the measured temperature
x̄(0) at the beginning of the week-long simulation. Soft
constraints on the control input with a penalty parameter
ρ ensure feasibility of the problem. The penalty represents
the cost of decreasing airflow below the set minimum value.
This is physically feasible as the set minimum airflow rate for
our testbed is significantly higher than the standard minimum
required by building standards. To find the optimal control
strategy, we make use of receding horizon control with a
prediction horizon of three 15-minute time steps.

Fig. 6: Optimal Temperature for MPC with Data-Driven Model (blue), MPC
with Physics-Based Model (orange) and Actual Temperature (green)

Fig. 7: Optimal Control Strategy for MPC with Data-Driven Model (blue),
MPC with Physics-Based Model (orange) and Actual Input (green)

Figure 6 shows the temperature trajectory computed by the
energy efficient controller (16) computed with both models
A and B, together with the measured temperature as a
reference. It can be seen that both control schemes are
capable of maintaining the temperature within [20◦C, 22◦C],
with a control strategy that is of comparable cost (1,006
and 1,731 for Model A and Model B, respectively, where
ρ = 100), shown in Figure 7. Furthermore, it is interesting
to observe that variations in the control input do not impact
the periodicity of the temperature qualitatively, which can be
explained by the regularity of the identified internal gains.

These findings suggest that both models perform equally
well in designing an energy efficient control strategy. How-
ever, computing this strategy for Model A was cheap (< 5
minutes) compared to Model B (≈ 20 hours) on a 2 GHz
Intel Core i7, 16 GB 1600 MHz DDR3 machine. Further,
we note that in real-world applications, the MPC would
use state feedback to initialize the temperature with sensor
measurements at every time step, whereas in our simulation,
it operates in an “open loop” fashion and hence propagates
the estimation error with time. This will reduce the difference
in the prediction quality by both controllers even further,



since the RMS error is now to be evaluated on a much shorter
prediction horizon, thereby further corroborating the finding
of almost identical control schemes.

Observing that Model A only suffers a negligible loss of
accuracy compared to Model B for an open loop optimal con-
trol scheme, our findings suggest the suitability of Model A
to applications with temperature-critical zones in which even
more precise temperature estimates are needed, e.g. long-
term planning of reserve provision for frequency regulation.

VI. DISCUSSION AND CONCLUSION

We identified a low-dimensional data-driven model, using
semiparametric regression, and a high-dimensional physics-
based resistance-capacitance model for the thermal behavior
of the same multi-zone commercial building. Both state-
space models were fitted on experimental data collected
during regular building operation and capture the effect of
disturbances such as occupancy and electrical appliances that
commercial buildings are subjected to, without installation of
any additional hardware such as occupancy sensors.

The identification of both models on the same building
enabled us to quantitatively compare the performance of
these types of models when applied to a real building,
which has not been investigated before. Our results showed
that the RMS error of the open-loop temperature prediction
of the physics-based model across different thermal zones
and temporal seasons is 0.11◦C lower than in the data-
driven model, a 25% reduction. However, simulating energy
efficient MPC schemes under both models suggested both
models perform equally well in terms of cost function mini-
mization and constraint satisfaction despite the significantly
higher complexity of the physics-based model.

It is widely known in this field that low-dimensional data-
driven models have lower prediction accuracy than high-
dimensional physics-based models, and thus have been only
proposed for control of less temperature-critical buildings
or zones. However, our work investigated an identification
method for data-driven models for multi-zone commercial
buildings in regular operation and demonstrated that the
lower open-loop prediction accuracy of such data-driven
models is insignificant in closed-loop control schemes com-
pared to a high-dimensional physics-based model. Based on
these findings, we suggest that such data-driven models may
be suitable for applications that were previously considered
inappropriate, e.g. frequency regulation.

Finally, we are currently working on verifying our hypoth-
esis by designing and implementing a control scheme suit-
able for frequency regulation, using the data-driven model,
into the building operation system of SDH.
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