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Abstract— The large-scale deployment of Advanced Metering
Infrastructure among residential energy customers has served
as a boon for energy systems research relying on granular
consumption data. Residential Demand Response aims to utilize
the flexibility of consumers to reduce their energy usage
during times when the grid is strained. Suitable incentive
mechanisms to encourage customers to deviate from their usual
behavior have to be implemented to correctly control the bids
into the wholesale electricity market as a Demand Response
provider. In this paper, we present a framework for short-
term load forecasting on an individual user level, and relate
non-experimental estimates of Demand Response efficacy (the
estimated reduction of consumption during Demand Response
events) to the variability of a user’s consumption. We apply our
framework on a dataset from a residential Demand Response
program in the Western United States. Our results suggest that
users with more variable consumption patterns are more likely
to reduce their consumption compared to users with a more
regular consumption behavior.

I. INTRODUCTION

The widespread deployment of Advanced Metering Infras-
tructure (AMI) has made granular data on the electricity
consumption of individual residential electricity customers
available on a large scale. Smart meters report the electricity
consumption of customers at a high temporal resolution,
which enables novel data-centric services. One such ser-
vice is residential Demand Response (DR), in which a DR
provider serves as an interface between individual residential
customers and the wholesale electricity market. The eco-
nomic argument made for DR is that it is believed to improve
economic efficiency by providing program participants with
a proxy of a price signal [1].

Regulators and market operators in different jurisdictions
have been moving towards allowing DR providers to offer
capacity directly into wholesale electricity markets [2], [3].
The DR provider incentivizes users to temporarily reduce
consumption at certain times, e.g. during periods of high
Locational Marginal Prices (LMPs), bundles these reduc-
tions, and makes capacity bids into the market. If dispatched,
the DR provider has to provide a reduction in energy con-
sumption with respect to a certain baseline, and is rewarded
by the LMP at the time of dispatch. In such auction-based
market settings, it is crucial for DR providers to be able to
make informed bids, as bidding too much capacity might
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result in a penalty due to failure to meet obligations, and
bidding too little would result in a suboptimal revenue. The
process of making bids is a complex problem - factors
to take into account are, among others, the LMP, which
determines the marginal price for DR reductions, the number
of responsive DR participants under contract, and some
knowledge about the behavior of these participants during
DR event periods. The DR provider can improve its bidding
strategy and efficiency by modeling the users’ consumption
behavior during DR and non-DR periods and by targeting
households with a high potential reduction during DR hours.

In this paper, we identify such users through a combi-
nation of established Machine Learning (ML) methods for
short-term load forecasting (STLF), load shape clustering,
and non-parametric statistics. STLF is employed to predict
the consumption of individual residential customers during
regular operation as well as during DR periods. This is used
in conjunction with a non-parametric hypothesis test to deter-
mine whether, under our modeling assumptions, a reduction
of consumption during DR periods can be detected [4]. These
reductions serve as non-experimental estimates of partici-
pants’ willingness to reduce energy consumption during DR
periods. We then identify a “dictionary” of consumption
patterns by clustering load shapes in order to correlate the
variability of an individual’s consumption pattern to our non-
experimental estimate of their consumption shift. Our results
show a positive correlation between the degree of variability
and our non-experimental estimates of the reductions. This
finding may be used for adaptive targeting of users solely
based on historical consumption data.

In the area of STLF, the two main categories of research
are statistical time series modeling and techniques relying
on predictor functions [5]. The first category makes use of
ARMA, ARIMA, and SARIMA models [6], and the second
uses classical regression techniques such as Least Squares,
Lasso- and Ridge-Regression [7], or a class of modern
nonparametric methods in which Support Vector Regression
[8], Nearest Neighbors Regression, Neural Networks [9], and
fuzzy models [9] have been most extensively studied. Other
approaches are based on Principal Component Analysis
[6], state-space models such as Kalman-Filtering [10] or
exponential smoothing methods (Holt-Winters Method) [11].

Clustering algorithms on residential load shapes have been
investigated in [12], [13]. A comparison between common
clustering algorithms is performed in [14]. Other methods,
e.g. Self-Organizing Maps, are explored in [15].

The contribution of this paper lies in combining methods
from STLF, load shape analysis, and non-parametric statistics



to identify more responsive users for DR programs. The
remainder of this paper is organized as follows: In Section
II, we introduce the data and outline preliminary steps. We
describe ML algorithms used for STLF in Section III and
detail the estimation of energy reduction during DR hours
in Section IV. In Section V, we present the methodology
used for load shape analysis, and then apply our methods on
both synthetic data (Section VI) and real consumption data
(Section VII). We conclude in Section VIII.

II. PRELIMINARIES

A. Data Characteristics

Our analyses are based on hourly smart meter readings of
500 residential electricity customers in the western United
States, collected between 2012 and 2014. Aligned with
those readings are timestamps of notifications sent by the
DR provider to the users that prompt them to reduce their
consumption for a short period. We also use ambient air tem-
perature measurements from public data sources to capture
the correlation between temperature and consumption.

B. Data Preprocessing

Before any analysis is carried out, the data is pre-processed
to provide a coherent basis for a comparison of different
forecasting techniques.

First, we exclude users with residential solar photovoltaics
to remove effects due to correlation in power generation
and DR events. We also exclude users with corrupt meter
readings (such as excessive or negative consumption).

Second, the time series for consumption and temperature
are matched by only taking data into account that includes
both temperature and consumption readings. Temperature ob-
servations are resampled to hourly data by taking a weighted
mean between non-evenly spaced measurements.

Third, consumption and temperature are standardized to
zero mean and unit variance to allow future comparisons of
prediction methods that are not necessarily scale-invariant.

Fourth, the consumption series are analyzed for stationar-
ity with the augmented Dickey-Fuller test [16]. In particular,
it has to be asserted that DR events, interpreted as exogenous
“shocks”, only have transitory effects and thus do not perma-
nently impact the non-DR consumption. After differencing
the consumption series in order to free it from seasonality, all
the consumption time series are found to be stationary with
a significance level of more then 99%. This is in accordance
with [11], where the authors KPSS Test to assert stationarity.

Fifth, and most importantly, hours of meter readings
“shortly” after DR hours are removed from the training data.
For every DR message sent, 8 hours of subsequent metering
recordings are removed to prevent forecasting algorithms to
learn from hours that have been influenced by users deviating
from their usual consumption behavior. We therefore assume
that users revert to their usual behavior at most 8 hours
after receiving a DR message. Since existing literature on the
“rebound effect”, which describes the increase of electricity
consumption after the end of DR periods, is concerned with
the consumption in a single hour after the DR event [17],

[18], removing 8 hours is a conservative estimate to remove
spillovers of consumption anomalies into the training data.

C. Covariates

We regress consumption on the following covariates:
• Previous hourly consumptions (autoregressive term),
• Previous hourly ambient temperatures,
• A categorical variable of length 48 combining the hour

of day with a boolean weekend indicator variable.

D. Data Splitting

The pre-processed data is split into a training set that
represents users’ “usual” consumption during non-DR hours,
and a DR set with consumption during DR events. The
outcome/covariate pairs for user i are denoted as

(
Y 0
i , X

0
i

)
and

(
Y 1
i , X

1
i

)
for the training and the DR set, respectively.

III. FORECASTING TECHNIQUES

We apply the following forecasting methods:
• Ordinary Least Squares Regression (OLS)
• Lasso (L1) and Ridge (L2) Regression
• k Nearest Neighbors Regression (KNN)
• Support Vector Regression (SVR)
• Decision Tree Regression (DT)

Due to space limitations, we omit in-depth descriptions of
the forecasting techniques. The reader is referred to the full
version of this paper [19] and the references therein, in
particular [20].

Each model is trained on
(
Y 0
i , X

0
i

)
and applied to the

covariates of the DR data X1
i to obtain the estimated

consumption Ŷ c
i . This prediction is then compared to the

observed consumption Y 1
i during DR events. The differences

Y ∆
i = Y 1

i − Ŷ c
i will be used to compare the statistical

differences between consumption predictions outside and
during DR periods.

For benchmarking purposes, we also use a baseline (BL)
measure commonly employed by Independent System Oper-
ators [21]. We chose the so-called “10 in 10” methodology
as defined by the California Independent System Operator,
which calculates the BL for a given hour by averaging the
consumption of the same hours of past days, excluding DR
events. Further, the baseline on a day of a DR event is
modified with a so-called Load Point Adjustment [22].

IV. NON-EXPERIMENTAL ESTIMATES OF DR
TREATMENT EFFECTS

A. Counterfactual DR Consumption

Following the general idea of [4], we use the differ-
ent models fitted on the training data to obtain a non-
experimental estimate of the counterfactual consumption Ŷ c

i ,
which is the consumption during DR times in the hypothetical
absence of a DR event. This consumption certainly cannot
be observed, since at all DR times, the DR event has affected
the consumption of a given user. This general problem
has been referred to as the fundamental problem of causal
inference [23]. Since model misspecification cannot be ruled
out, any true causal estimate of treatment effects will require



the comparison of different groups in a randomized con-
trolled trial. Since conducting such an experiment involves
significant preparation time and cost, the contribution of
our approach is that it allows to generate meaningful non-
experimental estimates in a much broader range of settings.

As a proxy for the unobservable counterfactual consump-
tion in the absence of a DR event, we use the prediction
Ŷ c
i obtained by the cross-validated forecasting techniques

presented earlier. We define the average empirical reduction
∆̂i for user i during DR hours as

∆̂i =
1

N

N∑
j=1

(
Ŷ c
i (j)− Y 1

i (j)
)
, (1)

which is simply the sample mean of the componentwise dif-
ference between the estimated counterfactual and the actual,
observed DR consumption. N represents the number of DR
events. The intuition is that the forecasting models have been
trained on non-DR data

(
Y 0
i , X

0
i

)
, and predictions for DR

consumptions Ŷ c
i assume the absence of DR events. Thus,

if the mean of the estimated counterfactual consumption
exceeds the mean of the actual DR consumption Y 1

i , then,
assuming the absence of model mismatch, the difference in
means can be interpreted as the mean reduction during DR
events. Note that ∆̂i is not restricted to positive values.

Equation (1) is an absolute measure that ignores the
respective overall consumption level. For a potentially more
meaningful, relative measure, we define the weighted mean
percentage reduction (MPR)

MPR =
1

N

N∑
j=1

Y 1
i (j)− Ŷ c

i (j)

|Ŷ c
i (j)|

· 100%, (2)

which normalizes the componentwise deviations by the esti-
mated counterfactual consumption. MPR < 0 corresponds to
an estimated average DR reduction of |MPR|%. Note that a
disadvantage of MPR lies in the normalization of the compo-
nentwise deviations by |Ŷ c

i (j)|, which gives disproportionate
errors for small |Ŷ c

i (j)|.

B. Nonparametric Hypothesis Test
∆̂i and MPR can be evaluated on a set of DR events

on the individual user level to estimate individual treatment
effects, or an aggregation of users to estimate average treat-
ment effects. Clearly, the accuracy of the estimated average
treatment effects scales with the size of the user base (modulo
potentially unmodeled effects).

However, ∆̂i and MPR on an individual user level will
typically be very noisy due to the volatility of the consump-
tion behavior of a single user. Therefore, we make use of
a nonparametric hypothesis test to compare our estimates
on individual users, following the approach presented in [4].
This is done by comparing the samples Y 1

i and Ŷ c
i with

the Wilcoxon Signed Rank Test, whose goal is to determine
whether these samples stem from different distributions. The
null hypothesis is that both samples are generated by the
same (unknown) distribution F (u):

H0 : Y 1
i , Ŷ

c
i ∼ F (u)⇒ E

[
Y 1
i − Ŷ c

i

]
= 0. (3)

The null hypothesis (3) is juxtaposed with the one-sided
alternative hypothesis H1, which states the existence of
a location parameter shift ∆ between the data-generating
distributions Y 1

i and Ŷ c
i , which are of the same shape:

H1 : Y 1
i ∼ F (u), Ŷ c

i ∼ F (u) + ∆, E
[
Ŷ c
i −Y 1

i

]
= ∆. (4)

If H1 is accepted, this suggests that, within the constraints of
our model, the predicted counterfactuals Ŷ c

i are on average
greater than the observed DR consumptions Y 1

i , which can
be interpreted as a mean reduction by ∆ during DR hours.
Further, the p-value of the hypothesis test is the probability
of making the observations under the null hypothesis.

C. Wilcoxon Signed Rank Test

We use the Wilcoxon Signed Rank Test (WSRT), also
called Hodges-Lehmann Estimator, with paired samples
(Ŷ c

i , Y
1
i ) to compute the p-value and an estimate ∆̂ of the

location parameter shift. The latter corresponds to the mean
empirical reduction of consumption during DR-events of user
i based on the samples (Ŷ c

i , Y
1
i ) [24].

V. SEGMENTATION OF USERS

The consumption behavior of residential electricity cus-
tomers is highly variable across the population, and many
analyses have been performed on the relationship between
socioeconomic factors and household energy consumption,
e.g. in [25]. Inspired by these approaches, we explore the
existence of a relationship between the variability of user
consumption and our non-experimental estimates of the
change in consumption during DR periods. Any conclusion
drawn from this analysis would be useful for the purpose
of targeting particular consumers and allow a more efficient
identification and recruiting of users for DR programs.

A. Load Shape Analysis

The idea is to find a reduced set of representative, “sig-
nature” load shapes that describes the consumption patterns
observed among all observed load shapes. Following [12],
we define a load shape s(t) of 24 hourly values as

a =

24∑
t=1

l(t) and s(t) =
l(t)

a
, (5)

where l(t) ∈ R24 is a daily consumption profile. We
only collect weekday consumption patterns, as there is an
increased variability of energy consumption during weekends
[12]. Next, to reduce the noise stemming from individual
daily load shapes, for each user, 5 consecutive weekday load
shapes are averaged and treated as a single one. Denote
the collection of all 5-day average loads as S. Finding
C1, . . . , Ck that minimize the squared error

SE =
∑
si∈S

(Ci − si)2
, (6)

where Ci denotes the cluster center closest to a given load
shape si, is a clustering algorithm with k clusters to be set.
Unlike [12], where the authors make use of a two-step,



hierarchical k-means algorithm, we choose the standard k-
means algorithm with different values of the number of a-
priori defined cluster centers k.

B. Variability of User Consumption

After the k cluster centers have been found, we character-
ize the variability of a given user using the following metrics:

1) Entropy: Each daily load shape of user j is matched
to its closest cluster center. Define pj(Ci) as the frequency
count of the event that a daily load shape is matched to
centroid i divided by the total number of load shapes. Then
the entropy Hj of user j is

Hj = −
k∑

i=1

pj(Ci) log(pj(Ci)). (7)

The entropy is minimal (= 0) if the user follows a single
centroid, and maximal (= log(k)) if all cluster centers are
of equal occurrence [12].

2) Hourly Standard Deviations: We suggest the metric

H̃j =

24∑
i=1

std [sj(i)] , (8)

i.e. the sum of the standard deviations of the observed hourly
consumptions over all hours for a given user j. This method
has the advantage that it avoids the need to a-priori define
the number of clusters k.

VI. VALIDATION ON SYNTHETIC DATA

We now construct synthetic data to verify the functionality
of our forecasting algorithms and predicted counterfactual
consumption to estimate the DR reduction. Our motivation
is that we can benchmark our models on the a-priori known
ground truth of the synthetic data. The goal is to show that,
within the limitations of our model, our learning algorithms
are capable of predicting the average empirical reduction (1)
and the MPR (2) with acceptable accuracy.

To generate an artificial time series l̄(t), a base consump-
tion consisting of the daily characteristic load shapes shown
in Figure 5 is constructed. The relative occurrence of the
12 dictionary load shapes in the base consumption is varied
so as to generate time series with different entropies (7).
Next, a linear temperature contribution as well as Gaussian
Noise ε ∼ N

(
0, σ2

)
are added. Further, a random subset

of the time indices are defined as DR hours, for which the
respective consumption is decreased by a constant cDR > 0.
The resulting artifical load shape l̄(t) therefore includes
(known) components of the daily characteristic load shapes,
the ambient temperature, and DR reductions:

l̄(t) = Ci(t) + ct · T (t)− I(t ∈ D) · cDR + ε(t), (9)

where D denotes the set of DR times, Ci(t) the cluster center
in the base consumption at time t, and ct the proportion-
ality constant for the ambient temperature at time t. After
standardizing l̄(t), we apply forecasting techniques on l̄(t)
with the same features used in Section II-C and investigate

the prediction accuracy as well as the estimates of the DR
reductions as a function of entropy and magnitude of noise.

Figure 1 shows scatter plots for three different noise
levels σ estimated with Ridge-Regression. The plot shows
the differences between actual and predicted MPR (2), the
differences between the known mean reduction and the esti-
mated mean reduction (1), the estimated location parameter
shift ∆̂ from the WSRT, and the mean absolute percentage
error (MAPE, (10)) of the consumption predictions. Subplots
1-2 indicate that higher noise levels do not qualitatively
impact the accuracy of prediction for MPR and the empirical
reduction, even though the range of errors increases as σ
increases. Similarly, the estimated location parameter shift ∆̂
from the WSRT varies around a constant, which, from further
analyses, is found to be cDR. As expected, higher noise levels
increase the MAPE of the predictions. The observations
imply that, under the correct model specification and in
the absence of confounding variables, Ridge-Regression is
capable of correctly estimating the MPR, the empirical
reduction, and the location parameter shift given by the
WSRT, even in the presence of noise. Important, the findings
of Subplots 1-3 are independent of entropy. Only subplot 4
shows an increase of MAPE as entropy increases, which is
consistent with intuition because more variable consumption
is inherently harder to predict. Lastly, further analyses show
that the qualitative nature of Figure 1 varies with the bias
of the estimator, in the sense that upward biased estimates
yield a higher ∆̂.

Fig. 1: Synthetic Data Characteristics with Different Noise Levels. Top Left:
Actual MPR − Predicted MPR, Top Right: Actual ∆̂− Predicted ∆̂, Bottom
Left: Wilcoxon-∆̂, Bottom Right: MAPEs

We can think of real load shapes as a mixture of base load
shapes, which describe the daily behavior of users. These
base loads are then perturbed with temperature influences
(e.g. increased AC consumption during hot days) and noise
(e.g. user vagaries). It can be imagined that different users
possess different archetypes of consumption behavior (e.g.
a single person household might have a more regular con-
sumption pattern than a family), and thus different entropies.



Since our analysis on the synthetic data shows that the
mean predicted DR reductions are independent of entropy,
we conclude that our prediction algorithms are applicable to
participants with different levels of consumption variability.

VII. EXPERIMENTS ON DATA

A. Prediction Accuracy

We use the mean absolute percentage error (MAPE) as a
measure for prediction accuracy:

MAPE =
1

N

N∑
j=1

|Y 0
i (j)− Ŷ 0

i (j)|
Y 0
i (j)

· 100%. (10)

Figure 2 shows box plots for the MAPE of different predic-
tion methods and the CAISO baseline across the user popu-
lation. L1, L2 and LS have similar MAPEs, which indicates
that because of the large data set available overfitting is not
an issue. As expected, the ISO baseline prediction performs
worst since it averages hourly consumption readings far back
in the past (up to 10 weekdays before a prediction), which
are unlikely to predict the consumption accurately. DTs and
SVR with median MAPEs of ∼ 23 and 29%, respectively,
outperform KNN and the linear regression methods whose
median MAPE across users is ∼ 30-35 %. However, com-
putation times of up to 45 minutes to fit an SVR model on a
time series of length 40,000 were observed, compared to < 5
seconds per user for the linear models (on a six-core CPU).
Prediction times for all methods, however, were negligible.

Fig. 2: MAPEs for Different Forecasting Techniques and CAISO Baseline

We acknowledge that more accurate predictions can likely
be obtained by taking into account more covariates, e.g. a
greater number of autoregressive consumption terms, more
temperature data, and more sophisticated ML algorithms
such as neural networks. This, however, is not the focus of
this paper, and the reader is referred to [9] for a discussion
on the performance of forecasting algorithms.

B. Estimation of Reduction of DR Consumption

Figure 3 shows box plots of the estimated treatment effects
determined by (1) and estimates of ∆̂ provided by the WSRT,
and Figure 4 gives box plots of the range of estimated MPRs
across all users by method, computed with (2).

In Figure 3 it can be seen that the median of the mean
empirical reductions, computed with both the WSRT and
(1), are greater than zero throughout. As already mentioned,
the different levels of ∆̂ can be explained by potentially
biased estimators, e.g. downward biased estimates of Ŷ c

i , on
average, yield a smaller ∆̂ [4]. Indeed, our findings reveal

that both KNN and SVR yield downward biased estimates
across all users with a median value of 0.0025 and 0.0034,
respectively. The bias for L1, L2 and DT was found to be
less than 10−9 for all users. This explains the smaller median
∆̂ for KNN and SVR.

According to Figure 4, the median MPRs are between
−0.2% and −7% for all methods except DT, which is syn-
onymous with a DR reduction in all cases but DT. It is seen
that the downward biased methods SVR and KNN result in a
smaller median reduction. For DT, the counterintuitive result
of an increased DR consumption (MPR > 0) despite a near
zero bias could possibly be explained with the normalization
of some

(
Y 1
i (j)−Ŷ 1

i (j)
)

by outliers in |Ŷ 1
i (j)| that are close

to zero due to misclassifications in the training step.

Fig. 3: Estimated DR Reductions. Left: Computed with (1); Right:
Wilcoxon-∆̂

Fig. 4: Predicted Mean Percentage Reductions (MPRs)
C. K-Means Clustering Results

Figure 5 shows the 12 characteristic centroids and the
number of load shapes that belong to the respective centroid.
Similar to [12], we can characterize different habits of users,

Fig. 5: Characteristic Load Shapes Identified with k-Means, k = 12

such as users with a morning and evening peak (#2, #3, #6,
#7, #9, #12), daytime peak (#5, #11), night peak (#8, #10),
and evening peak (#1, #4).



Fig. 6: Percentage of Rejected / Accepted Nulls for k-Means, 20 Clusters and Significance Level (1 − p) = 0.9

D. Entropies and P-Values

Figure 6 depicts bar charts for the percentage of accepted
and rejected Null Hypotheses as defined in (3) for a 90%
significance level and different forecasting methods, sorted
by entropy percentiles computed with (7) for k = 20. Clearly,
the percentage of rejections tends to increase as entropy
increases. Under the assumption of a correctly specified
model and in the absence of confounding variables, this sug-
gests that users with higher variability in their consumption
tend to have a lower consumption during DR events than
those with lower variability in their consumption. Figure
6 shows a similar trend for different significance levels,
k-means with 6 or 12 centroids as well as the standard
deviation (8) as entropy criteria. An interesting observation
is the tendency towards higher rejection rates for the linear
regression models compared to the nonparametric ones. This
can be explained by the downward biased estimates of SVR
and KNN, which reduce the estimated location parameter
shifts ∆̂. A lower estimated location shift results in a smaller
test statistic U , which then correlates with fewer rejected
nulls in expectation.

VIII. CONCLUSION

We analyzed Machine Learning methods for predicting
residential energy consumption and used them in conjunction
with a non-parametric hypothesis test to estimate users’
consumption reductions during peak hours. We presented two
entropy criteria for the variability of individual household
consumption and identified a positive correlation between
their inherent variability and the magnitude of the non-
experimental estimates of reductions during DR periods.

The covariates used in our approach proved to yield satis-
factory prediction results, and an improved choice of training
features will only improve the forecasting accuracy, but not
change our findings qualitatively. Further improvements can
be achieved by incorporating a larger data set with more
households and using more refined clustering methods.

The effect of biased forecasts on the estimated DR reduc-
tions highlights the need for a more careful evaluation of the
employed prediction methods, an issue that we are currently
exploring. Due to the non-experimental nature of our esti-
mates, in order to make claims about being able to identify
the causal effects of DR interventions, our methods will need
to be benchmarked against a randomized experiment.
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