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Abstract— The widespread deployment of Advanced Me-
tering Infrastructure has made granular data of residential
electricity consumption available on a large scale. One field
of research that relies on such granular consumption data
is Residential Demand Response, where individual users are
incentivized to temporarily reduce their consumption during
periods of high marginal cost of electricity. To quantify the
economic potential of Residential Demand Response, it is
important to estimate the reductions during Demand Response
hours, taking into account the heterogeneity of electricity users.
In this paper, we incorporate latent variables representing be-
havioral archetypes of electricity users into the process of short-
term load forecasting with Machine Learning methods, thereby
differentiating between varying levels of energy consumption.
The latent variables are constructed by fitting Conditional
Mixture Models of Linear Regressions and Hidden Markov
Models on smart meter data of a Residential Demand Response
program in the western United States. We observe a notable
increase in the accuracy of short-term load forecasts compared
to the case without latent variables. We estimate the reductions
during Demand Response events conditional on the latent
variables and discover a higher DR reduction among users with
automated smart home devices compared to those without.

I. INTRODUCTION

Residential Demand Response (DR) is a novel data-driven
service enabled by the large-scale deployment of Advanced
Metering Infrastructure (AMI). By communicating a proxy
of the marginal price of electricity to consumers, it is
acknowledged that economic efficiency can be increased [1].
During times when the grid is strained, a DR provider, which
serves as a mediating unit between residential electricity
consumers and the DR market, bids reductions with respect
to an expected consumption (baseline) into the wholesale
electricity market. Different market regulators, including
CAISO, have launched such pilot programs [2], [3]. If the
bid is cleared, the DR provider then prompts residential cus-
tomers to temporarily reduce their consumption in exchange
for a monetary reward proportional to the estimated reduction
during DR times. As it is impossible to observe both the
consumption conditional on DR-treatment and Non-DR-
treatment, it becomes essential to estimate the counterfactual
consumption, i.e. the consumption during DR times that
would have been observed if no treatment had occurred. This
is an application of the “Fundamental Problem of Causal
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Inference” [4], which states that it is impossible to observe
more than one treatment on the same subject at one time.

For economic purposes, it is of cardinal importance for
DR providers to bid the right amount of reductions into
the wholesale electricity market, since penalties incur for
shortfalls from the bidded capacity, and a suboptimal revenue
would be recorded for a too modest bid. Assuming the bid
is cleared, the major uncertainty is found to be the user
behavior during DR times, i.e. the amount of reduction in
response to the DR treatment. In [5], the authors find a
positive correlation between the variability in consumption
behavior and the magnitude of DR reduction, which suggests
targeting variable households for a higher reduction yield.

In this paper, we analyze the heterogeneity in users’
reduction behavior during DR times by using latent variables
in statistical forecasting methods. This Bayesian perspective
allows us to postulate the existence of behavioral archetypes
of users, which govern the resulting and observable energy
consumption. The latent variables are constructed in two
ways: Firstly, we use a Conditional Gaussian Mixture Model
(CGMM) of Linear Regressions, where the latent variable of
a given data point is a vector of probabilities, with each
component indicating the probability that the data point
was generated by the corresponding mixture component.
Secondly, we implement a Hidden Markov Model (HMM)
whose hidden layer encodes hourly binary latent variables
representing high and low levels of consumption, which
in turn can be interpreted as an indicator for occupancy.
The recommendation to DR providers is to prompt users
only during hours of believed presence at home, thereby
improving efficiency of targeting. Using this differentiation
between different magnitudes of consumption, we observe a
stark contrast in the estimated reduction between periods of
high and low consumption.

In the extant literature, short-term load forecasting (STLF)
has been extensively studied with different approaches and
on different levels of aggregations of users, ranging from the
individual level to city-wide predictions [6], [7]. Statistical
time series models [8], [9], standard parametric regression
models such as Ordinary Least Squares, Lasso- and Ridge-
Regression [7], and non-parametric methods including k-
Nearest Neighbors, Support Vector Regression [10], and
Neural Networks [11] have been evaluated with respect to
different metrics for accuracy. Widely explored Bayesian
Methods for STLF are Gaussian Processes [12], Bayesian
Neural Network approaches, e.g. for input selection problems
[13], and Kalman-Filtering methods [14] with Hybrid Neural
Network extensions [15]. HMMs for STLF have been applied
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primarily for the purpose of occupancy detection [16] and
Nonintrusive Load Monitoring [17]. [18] and [19] utilize
occupancy information to increase the energy efficiency of
building operation. To the best of our knowledge, CGMMs
have not been investigated for STLF.

The contribution of this paper is two-fold: First, it aims
to explore the potential for improvement in the prediction
accuracy obtained by incorporating latent variable informa-
tion from CGMMs and HMMs as an additional covariate
into regression models. Second, it provides insights into the
reduction behavior of users conditional on their latent states.
Both aspects can help the DR provider make more informed
bids into the wholesale market by targeting only the most
susceptible users. The remainder of this paper is structured
as follows: In Section II, we briefly outline classical Machine
Learning (ML) methods used for STLF. Sections III and IV
describe technical details of CGMMs and HMMs tailored to
the specific needs of STLF, followed by Section V, which
outlines the procedure of incorporating the estimated latent
variables into STLF. Section VI presents a framework for
estimating counterfactual consumption, which allows for the
computation of the magnitude of the reduction of electricity
consumption during DR hours. A case study on both semi-
synthetic and observational data is presented in Section VII.
Chapter VIII concludes the paper.

II. FORECASTING METHODS

The following well-established forecasting methods,
which regress the outcomes Y on the covariates X , are used
in the remainder of this paper:
• Ordinary Least Squares Regression (OLS)
• k Nearest Neighbors Regression (KNN)
• Support Vector Regression (SVR)
• Decision Tree Regression (DT)

Due to space limitations, we omit in-depth descriptions of
the forecasting techniques. The reader is referred to the full
version of this paper [5] and the references therein.

Notation: Let Y ∈ RN denote a column vector of N
scalar outcomes {y1, . . . , yN}, e.g. in our case electricity
consumption, and X ∈ RN×d the design matrix whose k-
th row represents the covariates xk ∈ Rd associated with
outcome yk. Let y and x denote a generic outcome and its
associated covariate vector, respectively.

III. MIXTURE MODELS

In this section, we describe the fitting procedure of CG-
MMs on data that combine multiple linear regression models
to act as an ensemble learner. Given a set of covariate-
outcome pairs (in our case yi denotes energy consumption),

D = {(xi, yi) : i = 1, . . . , N}, (1)

the idea is to model the probability distribution of any
observation y with corresponding covariates x as the output
of an ensemble of linear regressions

P(y|x,w, σ2, π︸ ︷︷ ︸
=:θ

) =

K∑
k=1

πkN (y|wk · x, σ2), (2)

where π = {π1, . . . , πK} and w = {w1, . . . , wK} denote
K mixing proportions with

∑K
i=1 πk = 1 and the regression

coefficients for each learner, respectively. σ2 signifies the
noise variance, where, according to [20], we make the
following

Assumption 1: σ2 is equal across all mixture components
k = 1, . . . ,K.
Assumption 1 can be relaxed by using mixture-specific noise
covariances {σ2

1 , . . . , σ
2
K}, in which case (5a)−(5d) need to

be modified.

A. Parameter Estimation

Given the training data D, the Expectation-Maximization
Algorithm (EM-Algorithm) [21], [20] allows us to de-
rive an iterative procedure to learn the parameters θ =
{{πk}Kk=1, {wk}Kk=1, σ

2}. We first define the expected com-
plete log likelihood `(θ|Dc), where

Dc = {(xi, yi, zi) : i = 1, . . . , N} (3)

denotes the fully observed dataset whose latent variables
{z1, . . . , zN} are assumed to be known. The latent variable
belonging to xi is a vector zi = [zi1, . . . , ziK ]

>, where zik
denotes the probability that xi was generated by mixture
component k. The complete log-likelihood is

`(θ|Dc) =

N∑
i=1

K∑
k=1

zik log
(
πkN (yi|wk · xi, σ2)

)
(4)

under the assumption of known zik. The EM-Algorithm
alternates between the E-Step, whose task is to determine the
expected value of the latent variables zik, 1 ≤ i ≤ N, 1 ≤
k ≤ K with respect to the conditional probability distribution
(2), and the M-Step, which updates the parameters θ with
the results from the E-Step by taking the derivative of the
expected value of (4) with respect to the desired parameters
θ. This is carried out iteratively until some convergence
criterion is reached, i.e. the incremental increase of the
expected complete log likelihood (4) falls below a threshold.
The update steps for one iteration are as follows:

ẑik =
π̂kN (yi|ŵk · xi, σ̂2)∑K
j=1 π̂jN (yi|ŵj · xi, σ̂2)

, (5a)

π̂k =
1

N

N∑
i=1

ẑik, (5b)

ŵk =
[
X>DX

]−1
X>DY, D = diag(ẑ1k, . . . , ẑNk),

(5c)

σ̂2 =
1

N

N∑
i=1

K∑
k=1

ẑik(yi − ŵk · xi)2, (5d)

where we have to incorporate the constraint
∑K
k=1 π̂k = 1

as a Lagrange Multiplier in the derivation.

B. Predicting New Data

To predict the outcome ŷ of an out-of-sample data point
x, we suggest a different approach than is employed by [20]:
Instead of using the estimated mixing proportions {π̂k}Kk=1
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as the weights for a convex combination of the estimated
regression coefficients {ŵk}Kk=1, we choose the weights
as the estimated latent variables {ẑjk}Kk=1 of x’s nearest
neighbor xj :

j = arg min
1≤i≤N

‖xi − x‖2 (6a)

ŷ =

K∑
k=1

ẑjkŵk · x (6b)

The rationale behind this approach is to exploit potential
spatial separation in the set of training data, i.e. the fact
that different regions of the covariate space are best fit by a
specific learner. By locating the nearest neighbor of x, the
same set of weights that proved to be most accurate for the
training of the data points in the region around x are to be
used for the prediction of ŷ.

IV. HIDDEN MARKOV MODELS

In this section, we briefly outline the training procedure
of HMMs. Figure 1 shows the graphical model of a standard
HMM with a hidden layer (transparent nodes), representing
latent variables, and observations (shaded nodes).

q0 q1 q2 ... qT−1 qT

y0 y1 y2 ... yT−1 yT

Fig. 1: Hidden Markov Model. Hidden States q, Observations y

A. Hidden Layer

We model the latent variables in the hidden layer (see
Figure 1) as a first order, time-invariant, Discrete Time
Markov Chain (DTMC) with a set of transition probabilities

aij = P(qt = j|qt−1 = i), 1 ≤ i, j ≤M, (7)

where t = 0, 1, 2, . . . , T denote time instants associated with
state changes and qt the hidden state at time t. Due to the
Markov Property, we have that, conditional on qt, qt+1 is
independent of qt−1. The state transition coefficients aij have
the properties

0 ≤ aij ≤ 1,

M∑
j=1

aij = 1, i, j ∈ {1, . . . ,M}, (8)

where M denotes the number of states (=latent variables).
We postulate the existence of two different latent states for

each hour of the day (HoD) between 6 a.m. - 8 p.m., and a
single state for the remaining hours, hence M = 38. For the
former hours, binary states describing each hour shall encode
information about “high” (“H”) or “low” (“L”) consumption,
which might be an indicator for occupancy (“H” = at home,
“L” = not at home). For the remaining HoDs, we note that
first, no DR events in our data set were recorded outside
this window, and second, little variation in the smart meter
recordings was observed, which is consistent with [5], where
the authors find little variation in clustered load shapes during

the night. Due to the Markov Property, state transitions
are restricted to states belonging to the next hour only,
which renders the Markov transition matrix A ∈ R38×38

sparse. Figure 2 shows the state transition diagram (without
probabilities on the edges, which are to be estimated from
data, see Section IV-C).

0
... 5

6H

6L

...

...

19H

19L

20 ...
23

Fig. 2: Markov State Transition Diagram, 24 Hour Periodicity. For Example,
“5” Signifies Time Between 5 a.m. - 6 a.m.

A logical extension is to allow for multi-step dependen-
cies, which can be achieved by enlarging the state space
of the DTMC such that the previous n > 1 states jointly
determine the next transition. A more granular description
of the state transitions, however, would come at the cost of a
higher computational complexity, a tradeoff whose analysis
is outside the scope of this paper.

A consequence of this modeling approach is that, if the
consumption is high at time t − 1, it is likely that the
hidden state qt−1 = H and qt = H, and so we expect
a high consumption at time t, as well. Conversely, if the
consumption at time t−1 is low (i.e. due to an absent user),
the most likely hidden state qt−1 = L and qt = L, and thus
we would expect a low consumption at time t. It turns out
that the parameter estimation on the data set used in Section
VII automatically assigns higher probabilities for transitions
to the next hour of the same type than to the opposite type,
indicating that switches between “H” and “L” do not occur
frequently. This is consistent with our intuition: If the latent
variable represents periods of expected presence or absence
at home, users are more likely to remain either at home or
absent, rather than switching every hour.

B. Observations

Assumption 2: Conditional on the current hidden state
qt, the observable energy consumption yt (=observa-
tion/emission) is assumed to be normally distributed with
parameters (µqt , σ

2
qt):

P(yt|qt) =
1√

2πσ2
qt

exp

(
− (yt − µqt)2

2σ2
qt

)
. (9)

An obvious extension is to choose alternative distributions,
an idea we do not investigate further in this paper.

C. Parameter Estimation and Inference

Given an observed sequence of emissions Y :=
{y0, y1, . . . , yT } with known initial state distribution πq0 ,
the parameters of the HMM θ := {{aij}, {µqt}, {σ2

qt}},
i.e. the transition probabilities and emission parameters, can
be estimated with the EM-Algorithm. Starting from the
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complete log-likelihood

`(θ|Dc) = log

(
πq0

T−1∏
t=0

aqt,qt+1

T∏
t=0

N (yt|µqt , σ2
qt)

)
,

(10)
with the fully observed data set

Dc = {(yn, qn, aqn,qn+1) : n ∈ [0, T − 1]} ∪ {πq0 , yT , qT },
(11)

minimizing the expected value of (10) with respect to the
desired variables θ to be estimated yields the update equa-
tions for the M-Step of the EM-algorithm (also called Baum-
Welch Updates):

π̂i = P(q0 = i|Y ) (12a)

âij =

∑T−1
t=0 P(qt = i, qt+1 = j|Y )∑T−1

t=0

∑M
j=1 P(qt = i, qt+1 = j|Y )

(12b)

µ̂i =

∑T
t=0 yt · P(qt = i|Y )∑T
t=0 P(qt = i|Y )

(12c)

σ̂2
i =

∑T
t=0 P(qt = i|Y )(yt − µ̂i)2∑T

t=0 P(qt = i|Y )
(12d)

To arrive at Equations (12a) and (12b), the stochastic con-
straints described in (8) and sparsity patterns of the transition
matrix A as well as

∑M
i=1 πi = 1 are used as Lagrange

multipliers during the minimization of (10).
Using Bayes Rule, the E-Step of the EM-algorithm com-

putes the sufficient statistics P(qt = i, qt+1 = j|Y ) and
P(qt = i|Y ) with the well-known Alpha-Beta-Recursion:

P(qt|Y ) =
P(Y |qt)P(qt)

P(Y )

=
P(y0, . . . , yt−1, qt)P(yt|qt)P(yt+1, . . . , yT |qt)

P(Y )

=:
α(qt)P(yt|qt)β(qt)

P(Y )
. (13)

We note that α(qt) is defined as P(y0, . . . , yt−1, qt) rather
than P(y0, . . . , yt, qt) as is done in [21], [22]. This is done
for a simplified treatment of its update step (14) and the
prediction problem (18).

Using Bayes Rule, α(qt) and β(qt) can be updated recur-
sively:

α(qt+1) = P(y0, . . . , yt, qt+1)

=
∑
qt

P(y0, . . . , yt, qt, qt+1)

=
∑
qt

α(qt)P(yt|qt)aqt,qt+1 . (14)

β(qt) = P(yt+1, . . . , yT |qt)
=
∑
qt+1

P(yt+1, . . . , yT , qt+1|qt)

=
∑
qt+1

β(qt+1)P(yt+1|qt+1)aqt,qt+1
. (15)

Note that P(yt|qt), 0 ≤ t ≤ T can be computed with (9).
α(q1) is initialized as πq0 and β(qT ) as a vector of ones.

With the definition of α(qt) and β(qt), P(qt, qt+1|Y ) is
computed as follows:

P(qt, qt+1|Y ) =
P(Y |qt, qt+1)P(qt, qt+1)

P(Y )

=
α(qt)β(qt+1)aqt,qt+1P(yt|qt)P(yt+1|qt+1)

P(Y )
. (16)

In summary, the EM-algorithm iterates between the E-Step
to compute the sufficient statistics P(qt = i, qt+1 = j|Y )
and P(qt = i|Y ) with Equations (13), (14), (15), and (16)
while fixing the parameters in (12a)−(12d), and the M-Step
to update the parameters in (12a)−(12d) while fixing the
sufficient statistics until some convergence criterion on the
expected value of (10) is reached.

D. Filtering, Smoothing, and Predicting the Latent Variable

After the parameters of the HMM have been estimated, we
turn to the problem of estimating the probabilities of the most
likely hidden state. Given the observation sequence Y :=
{y0, y1, . . . , yT }, the filtering problem calculates P(qT |Y ):

P(qT |y0, . . . , yT ) =
P(y0, . . . , yT |qT )P(qT )

P(y0, . . . , yT )

=
α(qT )P(yT |qT )

P(y0, . . . , yT )
. (17)

Alternatively, the prediction problem can be used to predict
the probability of the next hidden state at time T + 1, i.e.

P(qT+1|y0, . . . , yT ) =
P(y0, . . . , yT |qT+1)P(qT+1)

P(y0, . . . , yT )

=
α(qT+1)

P(y0, . . . , yT )
. (18)

Lastly, the smoothing problem can be solved to ex-post
predict the probability of the latent variable at a past time
1 ≤ p < T :

P(qp|y0, . . . , yT ) =
P(y0, . . . , yT |qp)P(qp)

P(y0, . . . , yT )

=
α(qp)P(yp|qp)β(qp)

P(y0, . . . , yT )
. (19)

V. SHORT-TERM LOAD FORECASTING

In the following, we describe online forecasting algorithms
that allow for including knowledge about the estimated latent
variables obtained from HMMs and CGMMs into the ML
methods introduced in Section II. We make the following

Assumption 3: The consumption time series Y is station-
ary, i.e. there are no structural changes in consumption
behavior over time.
This assumption is sound as we explain in Section VII.

A. Covariates for Prediction

The following observable covariates are used for all fore-
casting methods:
• Five previous hourly consumptions
• Five previous hourly ambient air temperatures
• A categorical variable for the hour of day for ML

methods without latent variable and the CGMM
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• A categorical variable interacting the hour of day with
the estimated latent variable obtained from HMM for
ML methods with HMM

B. Prediction with Hidden Markov Model

Algorithm 1 Algorithm for Online Prediction with HMM

Input: Training Data Dtr := {(xt, yt) : t = 0, . . . , T}, Test
Data Dte := {(xt, yt) : t = T + 1, . . . , τ}, ML Method

1: Initialize all µ1, . . . , µ38, σ
2
1 , . . . , σ

2
38 suitably

2: Initialize all aij , observing (8) and Figure 2
3: while ∆E [`(θ|Dc)] < ε do
4: Do E-Step: Calculate (9) and (16) for t =

[0, . . . , T − 1] , qt, qt+1 = [1, . . . , 38] with (13)−(15)
5: Do M-Step: Update HMM parameters with

(12a)−(12d)
6: end while
7: Solve smoothing problem (19) for t = 0, . . . , T − 1
8: Solve filtering problem (17) for t = T
9: Round P(q̂0|Dtr), . . . ,P(q̂T |Dtr) to 0 / 1

10: Fit ML Method on {((xt,P(q̂t)), yt) : t ∈ 0, . . . , T}
11: for s in [T + 1, τ ] do
12: Solve prediction problem (18) at time s
13: Round P(q̂s) to 0 / 1
14: Predict ŷs with ML method on covariates (xs,P(q̂s))
15: end for
16: return ŷT+1, . . . , ŷτ

Algorithm 1 describes the procedure of fitting an HMM
on training data Dtr, which yields estimated latent variables
to be used as additional covariates for the ML methods
presented in Section II to perform stepwise prediction on
the covariates of the test data Dte. The prediction accuracy of
these outcomes is then compared to those outcomes predicted
by ML methods that are trained on the training data Dtr
without estimated latent variables in the covariates.

C. Prediction with Conditional Gaussian Mixture Model

Algorithm 2 describes the online prediction method for a
CGMM with k = 2 on a given set of training and test data.
ŵ obtained by OLS is perturbed with zero mean Gaussian
Noise ε to obtain the initializations w1, w2. Note that this
step is necessary to break the symmetry of the update steps
(5a)−(5d), which would keep w1 = w2 = ŵ unchanged.

Note that in both Algorithms 1 and 2, the model-specific
parameters could be updated after each prediction as more
data from the test sequence is observed and hence enters Dtr.

D. Metric for Forecasting Accuracy

The Mean Absolute Percentage Error (MAPE) of predic-
tions of a set of discrete values vi ∈ V is used to evaluate
the accuracy of the predictor:

MAPE =
1

|V|
∑
i∈V

∣∣∣∣ v̂i − vivi

∣∣∣∣ · 100%, (20)

where v̂i denotes the estimate of vi.

Algorithm 2 Algorithm for Online Prediction with CGMM

Input: Training Data Dtr := {(xt, yt) : t = 0, . . . , T}, Test
Data Dte := {(xt, yt) : t = T + 1, . . . , τ}

1: Fit OLS model on Dtr to obtain ŵ
2: Initialize w1 ← ŵ + ε
3: Initialize w2 ← ŵ + ε
4: while ∆E [`(θ|Dc)] < ε do
5: Update CGMM parameters (5a)−(5d)
6: end while
7: for s in [T + 1, τ ] do
8: Predict ŷs with (6a) and (6b)
9: end for

10: return ŷT+1, . . . , ŷτ

VI. NON-EXPERIMENTAL ESTIMATES OF DR
REDUCTION

To estimate individual treatment effects, we adopt the
potential outcomes framework [23] with binary treatments
Tt ∈ {0, 1}, where Tt = 1 corresponds to a DR intervention
at time t, and Tt = 0 denotes its absence, hence “control”.
Let y0

t and y1
t denote the response (i.e. the electricity con-

sumption) that would be observed if an individual received
treatment 0 and 1 at time t, respectively. The goal is to
estimate the conditional treatment effect, i.e.

∆(x) = E
[
y1|x ∈ X

]
− E

[
y0|x ∈ X

]
, (21)

where x denotes a vector of observable covariates in the
covariate space X . Assuming an unconfounded assignment
mechanism of treatments to individuals and independency
of the potential outcomes of time, then, conditional on the
covariates (see [23] for details), the true causal effect of DR,
namely

(
y0
t − y1

t

)
, cannot be found because only one of y0

t

and y1
t can be observed (c.f. Fundamental Problem of Causal

Inference [4]).
Thus, Causal Inference is a “Missing Data Problem”.

Given the observed treatment outcomes y1
t1 , . . . , y

1
tn , to esti-

mate the true causal effect of treatment, one would require a
credible estimate of the counterfactuals ŷ0

t1 , . . . , ŷ
0
tn , i.e. the

outcomes in the hypothetical absence of treatment.
To compute such estimates in a non-experimental way,

we split the available consumption data into a pretreatment
training set with time indices t ∈ P consisting of “regular”
electricity consumption, i.e. all smart meter readings before
the customers’ signup date with the DR provider, and a
test set with corresponding times t ∈ S thereafter which
itself consists of smart meter readings during DR hours T
(treatment) and outside DR hours C (control), hence S =
T ∪ C. Let

DP = {
(
x0
i,t, y

0
i,t

)
: t ∈ P} (22a)

DC = {
(
x0
i,t, y

0
i,t

)
: t ∈ C} (22b)

DT = {
(
x1
i,t, y

1
i,t

)
: t ∈ T } (22c)

denote covariate/outcome pairs for the pretreatment period,
the control observations, and the treatment observations of
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user i, respectively. By fitting any regression model presented
in Section II on the pretreatment training data DP of a given
user i, and under Assumption 3, applying this model on the
treatment covariates {x1

i,t : t ∈ T } yields user i’s estimated
counterfactuals {ŷ0

i,t : t ∈ T }. In particular, Assumption 3
states that DR treatments are interpreted as transitory shocks
that do not result in a change in the consumption behavior
for t ∈ C. An elementwise comparison of {ŷ0

i,t : t ∈ T } and
{y1
i,t : t ∈ T } yields the pointwise estimated reduction of

user i’s consumption {ŷ∆
i,t : t ∈ T } during each DR event:

{ŷ∆
i,t : t ∈ T } = {(ŷ0

i,t − y1
i,t) : t ∈ T }. (23)

ŷ∆
i,t > 0 corresponds to an estimated reduction of ŷ∆

i,t, and
conversely, ŷ∆

i,t < 0 implies an estimated increase by |ŷ∆
i,t|.

VII. EXPERIMENTS ON DATA

We conduct a case study on a data set of a residential
DR program including residential customers in the western
United States, collected between 2012 and 2014. Aligned
with those readings are timestamps of notifications sent by
the DR provider to the users that prompt them to reduce their
consumption for a short period, typically until the next full
hour. A subset of the users have smart home devices that
can be remotely shut off by the DR provider with the users’
consent. Ambient air temperature measurements were logged
from publicly available data sources to capture the correlation
between temperature and electricity consumption.

A. Characteristics of Data and Data Preprocessing

Users with the following characteristics are excluded from
the analysis:
• Users with residential solar photovoltaics (PV)
• Users with corrupt smart meter readings, i.e. unrealisti-

cally high recordings
The consumption series of the remaining users are then
aligned with available temperature readings and mapped to
the range [0, 1] to be able to compare users on a relative
level. The temperature data is standardized to zero mean
and unit variance. Lastly, the pretreatment data is tested
for stationarity with the augmented Dickey-Fuller Test [24]
to assert, with a significance level of more than 99%, the
absence of a unit root, which motivates Assumption 3.

B. Experiments on Semi-Synthetic Data

As only one of {y0
i,t, y

1
i,t} for a given user i at time t can

be observed, we construct semisynthetic data for which both
values and hence the true causal effect (y0

i,t−y1
i,t) are known.

This allows us to evaluate the accuracy of predicted coun-
terfactual consumptions and the ensuing non-experimental
estimates of DR reduction (23). For this purpose, we take
actual pretreatment training data DP (22a) for each user i,
which is free of any DR messages. Next, we split this training
set into two pieces by introducing an artificial signup date
t̃ valid across all users. We thus obtain a synthetic training
set D̃P = {

(
x0
i,t, y

0
i,t

)
: t ∈ P, t < t̃} and a synthetic test

set D̃S = {
(
x0
i,t, y

0
i,t

)
: t ∈ P, t ≥ t̃} for user i. Next, a

random subset T̃ of all available time indices in the synthetic

test set D̃S between 6 a.m. - 8 p.m. is assigned a synthetic
treatment, for which the respective consumption is decreased
by a random value ∈ [0, c̄]. By doing so, both the treatment
and control outcomes for t ∈ T̃ become available, and so
we obtain the semisynthetic data set

D̃T̃ := {
(
x0
i,t, y

0
i,t, y

1
i,t

)
: t ∈ T̃ }. (24)

Thus, any non-experimental estimate of the DR treatment
effect for t ∈ T̃ can be benchmarked on the known
(synthetic) counterfactual {y0

i,t : t ∈ T̃ }.
This semisynthetic data set is used for two purposes. First,

we evaluate the MAPE (20) of the estimators from Section
II, with and without latent variables. This is done by training
them on Dtr = D̃P and testing on Dte = D̃S , which yields
out-of-sample counterfactual consumptions {ŷ0

i,t : t ∈ T̃ }
across all users i, see Algorithms 1 and 2. Second, we
conduct a comparison of the eventwise errors of estimated
DR reductions for all ML methods with the HMM latent
variable (CGMM is not considered further), which, for a
given user i at time t, are obtained as follows:

ŷ∆
i,t − y∆

i,t =
(
ŷ0
i,t − y1

i,t

)
−
(
y0
i,t − y1

i,t

)
= ŷ0

i,t − y0
i,t. (25)

The ground truth counterfactual y0
i,t is available for the

semisynthetic data (24) by construction, but would be un-
available for real-world data.

Figure 3 shows a boxplot of the distribution of average
MAPEs across users for the prediction methods introduced
in Section II with and without the latent variable from HMM,
and for the CGMM (Section III). It can be seen that the

OLS Mix. OLS+ KNNKNN+ DT DT+ SVR SVR+
20

40

60

80 Green: Mean
Red: Median

MAPEs by Model

Fig. 3: Prediction Accuracy by Forecasting Method. “+” Signifies Model
with HMM Latent Variable, “Mix.” Denotes CGMM. Blue Boxes Span 25-
75th Percentile, Whiskers 10-90th.

information about the latent variable improves the prediction
accuracy in all cases but SVR. Further, the lower MAPE
obtained with DT and SVR is consistent with the findings in
[7], [9]. The higher MAPE for KNN compared to OLS can
be explained by the different magnitudes of the covariates
introduced in Section V-A, which gives categorical variables
disproportionate weight. The CGMM performs better than
OLS, but worse than OLS with the latent variable. Note that
other more sophisticated predictors (e.g. Neural Networks)
have lower MAPEs at the cost of longer computation times
and potential loss of interpretability, but are likely to show
a similar improvement in terms of MAPE by incorporating
information about the estimated latent variable as the amount
of training data increases. For a comparison between the
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prediction accuracy of state-of-the-art estimators, the reader
is referred to [7], [9] for further information.

Figure 4 shows histograms of eventwise prediction errors
(25) in the estimated DR reduction for single events and
across all users i. Green bars and red bars signify prediction
errors of forecasting methods that do and do not make use
of the estimated latent variable from HMM, respectively.
Aligned with these plots are the sample mean and covariance
of the errors for the models that take the latent variable into
account. The bias-variance decomposition

E
[(
ŷ∆
i,t − y∆

i,t

)2]
= Bias(ŷ∆

i,t)
2 + Var(ŷ∆

i,t) + ε, (26)

where ε denotes the irreducible error, is invoked in the
following. Noting that µ̂ and σ̂2 in Figure 4 correspond
to the bias and variance in (26) from the model with
latent variable from HMM, the tradeoff becomes clear when
comparing OLS, DT, and SVR. A lower variance of DT
and SVR comes at the cost of a higher bias. For KNN,
both bias and variance are larger than in OLS, which is
explained by the poor predictive performance of KNN (see
Figure 3). For a subsequent analysis of individual treatment
effects (ITEs), we choose the least biased estimator that uses
latent variables, in our case OLS, despite its higher overall
prediction error compared to SVR and DT.
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Fig. 4: Pointwise Prediction Error of DR Treatment Effect on the User
Level; Bias µ̂ and Variance σ̂2 of Model with Latent Variable from HMM.

C. Experiments on Actual Data

In the following, we analyze ITEs for users with and
without smart home devices. The analysis of reduction is
carried out with OLS that utilizes an estimate of the HMM
latent state because it is found that this method has the lowest
bias on semisynthetic data (see Figure 4).

In the real data case, only the treatment outcomes {y1
i,t :

t ∈ T } for user i are observed during DR events, and so the
counterfactuals {ŷ0

i,t : t ∈ T } are predicted to calculate a
non-experimental estimate of the DR reduction (23). Using

Algorithm 1 on the pre-signup data DP (22a) as training
data Dtr for each user and Dte = DC ∪ DT (22b), (22c),
the pointwise reductions across all users and each treatment
t ∈ T are calculated. Figure 5 shows boxplots of estimated
DR reductions conditional on (a) the hour of day, (b) users
with and without smart home devices, and (c) the predicted
latent states. The gray bars represent “placebo” events (i.e. a
subset of hours t ∈ C outside DR treatments hours, but after
the signup date) estimated by the same model.

Figure 5 gives rise to two observations: First, the estimated
reduction conditional on the “high” latent state is greater in
magnitude for users with smart home devices, following the
intuition that the “high” state describes the operation of smart
home devices which can be conveniently shut off during DR
hours. In contrast, the lower estimated reductions of regular
users during “high” latent states might reflect the additional
hassle cost that incurs for users to manually reduce their
consumption. Second, the estimated reductions for both users
with and without smart home devices and conditional on
the “low” latent state show mean reductions around zero,
contrary to the expectation of a small positive reduction. This
might indicate the existence of a threshold representing the
standby consumption of users, below which it is hard or
impossible to reduce consumption further.

This finding could be particularly meaningful to the DR
provider, as it presents a recommendation as to when to call
DR events and for which users, which could improve the
allocative efficiency of DR targeting and be a stepping stone
towards calculating optimal bids.

VIII. CONCLUSION

We developed non-experimental estimators from Machine
Learning for estimating ITEs of Residential Demand Re-
sponse and showed that incorporating a latent variable, either
with a Conditional Gaussian Mixture Model or a Hidden
Markov Model, allows for an improvement in prediction
accuracy. This Bayesian approach is motivated by the need
to obtain interpretable and physically meaningful results cap-
turing the users’ electricity consumption behavior. We then
tested the forecasting algorithms on semi-synthetic data to
find that Ordinary Least Squares in conjunction with a latent
variable produces the least biased estimator for DR reduction.
Lastly, this estimator was applied on a residential DR data set
to determine hourly reductions of electricity consumption for
both users with and without automated electric devices. The
highest reductions were found to be among users with home
automation devices during “high” estimated latent states,
which in turn provides a recommendation for DR providers
for targeting purposes, i.e. to focus on automated users for
the highest yield in reduction.

This paper provides only a foundation for more profound
analyses in the area of Residential Demand Response. In
particular, latent variables can be added as an additional
covariate to more computationally demanding estimators, for
instance Neural Networks or Random Forests, in order to
assess the gain in forecasting precision with latent variables.
This is an area to be explored by the established area of
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Fig. 5: Estimated Reduction Across Users by Hour of Day (Yellow) vs. Estimated Reduction for Placebo Events (Gray) for Automated and Non-Automated
Users Conditional on Estimated Latent Variable. Red: Median, Green: Mean. Blue Boxes Span 25-75th Percentile, Whiskers 10-90th.

STLF, which has traditionally been focusing on maximizing
the precision of forecasting algorithms. Further, various
extensions to modeling the HMM are worth exploring, such
as enlarging the state space of the Markov Chain to enforce
a dependency on more than just the previous hour, or
increasing the number of hidden states for a given hour
(i.e “low”, “medium”, and “high” consumption). Lastly, the
estimated latent variable could be related to a measure of
occupancy in residential dwellings, and so a validation of
the estimated latent states on ground truth data on occupancy
would be interesting if privacy concerns could be overcome.
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