
Building Model Identification during Regular Operation
– Empirical Results and Challenges

Qie Hu, Frauke Oldewurtel, Maximilian Balandat, Evangelos Vrettos, Datong Zhou, and Claire J. Tomlin

Abstract— The inter-temporal consumption flexibility of com-
mercial buildings can be harnessed to improve the energy
efficiency of buildings, or to provide ancillary service to the
power grid. To do so, a predictive model of the building’s
thermal dynamics is required. In this paper, we identify a
physics-based model of a multi-purpose commercial building
including its heating, ventilation and air conditioning system
during regular operation. We present our empirical results and
show that large uncertainties in internal heat gains, due to occu-
pancy and equipment, present several challenges in utilizing the
building model for long-term prediction. In addition, we show
that by learning these uncertain loads online and dynamically
updating the building model, prediction accuracy is improved
significantly.

I. INTRODUCTION

Commercial buildings account for more than 35% of
electricity consumption in the U.S., 39% of which is due
to heating, ventilation and air conditioning (HVAC) systems
[1]. Energy consumption of HVAC systems can be partly
shifted in time without compromising occupant comfort,
because of buildings’ inherent thermal capacity. As a result,
there has been extensive research, using frameworks such as
model predictive control (MPC), trying to harness this inter-
temporal consumption flexibility and minimize energy usage
of buildings [2], [3]. More recently, the feasibility of using
buildings to provide ancillary services, such as frequency
regulation, to the power grid has also been studied [4],
[5], [6], [7], [8]. Such applications require accurate models
describing the thermal dynamic behavior of the buildings.

A. Desired Model Features and Challenges

The building models should be identified using actual
experimental data and capture realistic disturbances, such as
internal gains. Furthermore, bilinear, multi-zone models may
quantify buildings’ electricity consumption flexibility more
precisely: the bilinear thermal dynamics naturally arise from
the physics of the HVAC system (refer to Section III for
details); controllers designed using multi-zone models can
allow the temperature of a room to fluctuate when it is un-
occupied, for instance, hence achieving energy savings which
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are not possible when simplified models that approximate the
building as a single zone are used.

However, there are many challenges in identifying such
a building model. First, actual buildings often have dif-
ferent types of spaces that are subject to very different
uncertainties, e.g. occupancy, which are difficult to capture.
Second, buildings are often not sufficiently excited, as they
must satisfy strict regulatory requirements during regular
operation, which limit the type and duration of excitation
experiments that can be conducted [9].

To circumvent these difficulties, various approaches have
been taken in the research community. In [9], [10], [11],
the authors identify data-driven linear models for a single
type of building space. Lin et al. [12] conduct frequency
regulation experiments under a controlled environment with-
out disturbances such as solar radiation and occupants, thus
simplifying the building model required to design the con-
troller. Faced with insufficient excitation of buildings, Mehdi
et al. [13] reduce the required model complexity by carrying
out their experiments in a single room, whereas others [14],
[15], [16] use lumped thermal models that approximate the
building as a single zone, with an average building tem-
perature. Finally, the authors of [17], [18] identify and test
multi-zone models for a single floor and an entire building,
respectively, using simulated data where uncertainties are
precisely controlled or removed, and arbitrary excitations can
be simulated.

These approaches are valuable in providing estimates of
a building’s consumption flexibility, however none of them
delivers a model that satisfies all the aforementioned desired
features for a more precise quantification of the building’s
flexibility.

B. Contributions

In this paper, we identify a semi-parametric model for
a multi-zone commercial building during regular operation.
Our main contributions are the following:

• We propose a procedure to identify a physics-based
model of a multi-zone building, that is easy to imple-
ment with the building in regular operation, and captures
internal gains such as occupancy. This procedure uses
excitation experiments that actively perturb the building
and generate data that can be used for more accurate
parameter identification.

• We provide an analysis of the model’s prediction ac-
curacy versus its prediction horizon, and show that this
model is limited in making long-term predictions, partly
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Fig. 1. Zones for the 4th floor of Sutardja Dai Hall (SDH).

due to large disturbances such as internal gains, which
are uncertain.

• Finally, we propose to dynamically update the estimate
of internal gains based on current temperature measure-
ments, and show that this significantly improves the
building model’s prediction accuracy.

This paper is organized as follows: We begin by describing
the building and the excitation experiments in Section II.
We then present the building model in Section III. Section
IV describes our identification method for a fixed model and
reports the prediction results. A model that is updated online
is presented in Section V. Finally, we provide a discussion
of uses and challenges related to building models.

Notation: Unless stated otherwise, subscripts in italics as
in ui denote instances of variables. Upright subscripts as in
Uwin denote variable names.

II. BUILDING AND EXCITATION EXPERIMENTS

A. Building

Sutardja Dai Hall (SDH) is a building located on the
University of California, Berkeley campus. For ease of
presentation, we focus on the entire 4th floor of SDH, which
has a total floor area of 1300m2. As shown in Figure 1, we
aggregate the rooms into 6 zones: Northwest (NW), West
(W), South (S), East (E), Northeast (NE) and Center (C). The
north-side rooms are grouped into 2 zones because of their
distinct characteristics: rooms in zone Northwest are offices
with windows, whereas zone Northeast includes elevators,
restrooms and utility rooms, and does not have windows.

This building is equipped with a variable air volume
(VAV) HVAC system, that is common to 30% of all U.S.
commercial buildings [19]. The system contains large supply
fans that drive air over cooling coils, cooling it down to a
desired supply air temperature, and then distribute the air
to VAV boxes that govern the airflow to different building
zones. The supply air may be reheated at the VAV box before
entering the room. The 4th floor of SDH is served by 21 VAV
boxes.

B. Excitation Experiments and Data

Data was collected during 11 non-consecutive weeks be-
tween September 2014 and June 2015. This time span in-
cludes periods when the building was under normal operation
as well as periods with excitation experiments. Recorded data

points include room temperatures measured at all VAV boxes
on the 4th floor of SDH, air inflow rates from each VAV box,
HVAC system’s supply air temperature, outside ambient air
temperature and solar radiation data recorded from a nearby
weather station [20].

For accurate parameter identification, temperatures of
neighboring zones should not be strongly correlated [21]. For
buildings in regular operation, this is generally achievable
through forced response experiments. Because of commer-
cial buildings’ large thermal inertia, each forced excitation
must last sufficiently long before temperature changes are
observed. With these points in mind, we conducted our
experiment as follows: Starting at 8am, every 2 hours, the
supply airflow rate to one zone is set to its maximum value,
minimum airflow rates are set for each of its neighboring
zones and a random airflow rate is chosen for each remain-
ing zone. This is repeated for each of the 6 zones. This
experiment is performed during weekends as (a) it minimizes
effects due to building occupancy on our data, and thus the
subsequent parameter identification; (b) temporary violation
of comfort constraints during the weekend was allowed.

III. BUILDING MODEL

A. RC Modeling and the BRCM Toolbox

We derive a Resistance-Capacitance (RC) model for our
building using the Building Resistance-Capacitance Mod-
eling (BRCM) MATLAB toolbox [17]. The RC modeling
methodology first decomposes a building into building ele-
ments (BE), such as the bulk volume of air in each room,
walls, floors and ceilings. Then, an electric analogy is used
to derive an equivalent electrical circuit whose resistances
and capacitances represent thermal resistances and thermal
capacitances of the BEs, and voltages and currents represent
temperatures of BEs and heat transfers between those. The
thermal resistances and capacitances of BEs are completely
characterized by their geometry and construction data such
as density, convection coefficient and specific heat capacity.

In the BRCM toolbox, a building model consists of two
parts: a thermal submodel and external heat flux submod-
els (EHFM). The thermal submodel describes passive heat
transfer between the BEs and the EHFMs capture heat gain
or loss due to external inputs and disturbances such as the
outside environment. The BRCM toolbox semi-automates the
derivation of an RC model by automatically computing the
thermal submodel using the electrical circuit analogy and
an input file that contains geometry and construction data
of all BEs (e.g. we use an EnergyPlus file developed for
the 4th floor of SDH as our input file). The EHFMs can be
user defined, as different buildings may be subject to distinct
inputs and disturbances.

B. Building Model

In this section, we first describe the EHFMs for our
building and then present the final state-space model of the
building.

There are 3 EHFMs:
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• Building hull: convective heat transfer and solar radia-
tion gains across exterior walls and windows.

• HVAC: heat gain from the HVAC system.
• Internal gains (IG): heat gain due to occupancy, electri-

cal appliances and other unmodeled disturbances.

Let x ∈ R289 be the state vector whose elements are the
temperatures of all BEs on the 4th floor of SDH1, u ∈ R21

be the air inflow rate from the 21 VAV boxes on this
floor and v :=

[
vTa; vTs; vsolE; vsolS; vsolW; vsolN

]
∈ R6 be

the disturbance vector whose elements represent ambient air
temperature, supply air temperature from the HVAC system
and solar radiation from the four geographical directions,
respectively.

Building Hull: If the i-th BE is connected to the
building hull, e.g. a room adjacent to the exterior wall,
then the external heat fluxes acting on it due to the outside
environment are modeled as:

qBH,i = γEW aEW,i

(
vTa(t)− xi(t)

)
+ γabsorp aEW,i vsol,i(t)

+ Uwin awin,i
(
vTa(t)− xi(t)

)
+ γwinSolAbs awin,i vsol,i(t),

(1)
where aEW,i and awin,i are the total areas of the ex-
terior wall and the window respectively, and vsol,i ∈
{vsolE; vsolS; vsolW; vsolN} is the solar radiation affecting this
BE. γEW, γabsorp, Uwin and γwinSolAbs are tuning parameters
of the model and their descriptions are given in Table I.

HVAC: If the i-th BE is a room equipped with at least
one VAV box, then the heat flux acting on it is:

qHVAC,i = cp
(∑

j∈Bi
uj(t)

)
·
(
vTs(t)− xi(t)

)
, (2)

where cp is the specific heat capacity of air, Bi is the set of
VAV boxes serving the i-th room and uj is the j-th element
of u. Note that due to the lack of temperature measurements
of the supply air at the outlet of VAV boxes, vTs is the supply
air temperature upstream of the VAV boxes’ heating coils,
i.e., heat gains due to reheating at the VAV boxes are not
modeled by (2), but are captured by the internal gains EHFM
in our model.

Internal Gains: If the i-th BE is a room, then it is also
subject to internal gains, which are modeled as:

qIG,i = afloor,i
(
cIG,i + fIG,i(t)

)
, (3)

where afloor,i is the room’s floor area. cIG ∈ R6 is an
unknown constant vector representing a background time-
invariant heat gain per unit area in each of the 6 zones, due to
idle appliances. The function fIG(t) : R→ R6 is an unknown
function that captures time-varying internal gains in different
zones. Finally, cIG,i and fIG,i(t) are the relevant elements of
cIG and fIG(t) that correspond to the i-th room.

1In the EnergyPlus file for the 4th floor of SDH, each wall, floor
and ceiling is decomposed into 2 to 3 BEs. In RC building models, the
temperature of each BE is modeled by one state variable, thus the model
of the 4th floor of SDH has a large number of states: 289.

TABLE I
MODEL PARAMETERS.

Parameter Description Value [Unit]
γEW exterior wall convection coeff. 10.5 [W/(m2K)]
γIW interior wall convection coeff. 29.4 [W/(m2K)]
γfloor floor convection coeff. 51.5 [W/(m2K)]
γceil ceiling convection coeff. 44.3 [W/(m2K)]
γabsorp ext. wall solar absorption coeff. 0.75 [-]
γwinSolAbs window solar absorption coeff. 0.03 [-]
Uwin window heat transmission coeff. 0.63 [W/(m2K)]
cIG,NW background heat gain in zone NW 0.3 [W/m2]
cIG,W background heat gain in zone W 8.0 [W/m2]
cIG,S background heat gain in zone S 18.8 [W/m2]
cIG,E background heat gain in zone E 8.0 [W/m2]
cIG,NE background heat gain in zone NE 11.0 [W/m2]
cIG,C background heat gain in zone C 8.0 [W/m2]

After defining all EHFMs, the BRCM toolbox automati-
cally generates the following model:

ẋ(t) = Atx(t) +Bt

[
qBH
(
x(t), v(t)

)
+ qHVAC

(
x(t), v(t), u(t)

)
+ qIG(t)

]
,

= Ax(t) +Bvv(t) +BIG
(
cIG + fIG(t)

)
+
∑21

j=1

(
Bxuj

x(t) +Bvuj
v(t)

)
uj(t)

(4)

where in the first equality, At, Bt represent the thermal
submodel, and qBH(·), qHVAC(·), qIG(·) are the EHFMs,
which are vector-valued functions as follows: if the i-th
BE is not subject to a specific EHFM, say HVAC, then
qHVAC,i = 0, otherwise qHVAC,i is given by Equation (2).
The second equality is obtained by expressing qBH, qHVAC
and qIG as functions of x, u and v, using (1) to (3). The
bilinearities in (4) naturally arise from the physics of the
HVAC system (refer to Equation (2)).

Finally, we discretized the model using a fixed time step of
15 min to obtain its approximate discrete time model, which
is semi-parametric and bilinear:

x(k + 1) = Ax(k) +Bvv(k) +BIG
(
cIG + fIG(k)

)
+
∑21

j=1

(
Bxujx(k) +Bvujv(k)

)
uj(k)

y(k) = Cx(k),

(5)

where x, u and v are as defined before, and y ∈ R6 represents
the measured average temperature of each zone.

IV. MODEL IDENTIFICATION

The model identification process is carried out in two
steps. In Section IV-A, we identify the model parameters
listed in Table I. To simplify the parameter identification
process, we use the approximation fIG(k) = 0 during
weekend days, in order to reduce (5) to a purely parametric
model. With the optimal parameter values in hand, we then
identify the function fIG(·) in Sections IV-B.

A. Parameter Identification

The model parameters are estimated using data collected
during two weekends in spring and summer, when excitation
experiments were carried out. The identified model is then
validated on data collected during a weekend in fall (using
fIG(k) = 0).
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TABLE II
RMS ERROR FROM PARAMETER IDENTIFICATION USING WEEKEND

DATA, BY ZONE, FOR THE TRAINING AND VALIDATION DATASETS.

NW W S E NE C Mean

Training 0.46 0.41 0.24 0.34 0.27 0.28 0.333

Validation 0.62 0.57 0.31 0.28 0.39 0.31 0.413

Let γ ∈ R13 be the parameter vector whose elements are
those parameters listed in Table I. We choose the optimal γ̂
that solves the following optimization problem:

γ̂ = arg min
∑

k ‖y(k, γ)− ȳ(k)‖2

s.t. y(k, γ) and x(k, γ) satisfy (5) with fIG(k) = 0 ∀k
u(k) = ū(k), v(k) = v̄(k) ∀k
x(0) = xKF(0)

γ > 0, 0 ≤ γabsorp, γwinSolAbs ≤ 1,
(6)

where ȳ, ū and v̄ are measured zone temperatures, inputs
and disturbances, respectively; and xKF(0) is the initial state
estimated using a Kalman Filter. Estimating x(0) is necessary
since not all states can be measured (for example, the wall
temperatures are not). In other words, we choose the set of
parameters such that when the model is simulated with this
set of parameters and the measured inputs and disturbances,
the sum of squared errors between the measured temperatures
and the simulated temperatures is minimized. We can use
prior knowledge about the building to compensate for limited
excitation of the system, e.g. we use initial guesses for
parameter values that are physically plausible.

The identified parameter values are reported in Table I.
The root-mean-square (RMS) errors between the model’s
simulated temperature for different zones and the measured
temperatures for the training data are shown in Table II.
This table also shows the RMS prediction errors when the
identified model is used to predict a validation dataset (also
on weekend data, using fIG(k) = 0).

B. Identification of the Time-Varying Internal Gains

A random subset of 8 weeks is selected from the entire
dataset and used as training data for estimating the time-
varying internal gains function fIG(·), and the remaining 3
weeks of data are used as a validation set. For each week w
in the training set, we estimate an instance of this function,
fIG,w(·). The final estimate of the function fIG(·) is defined
as the average of all estimates fIG,w(·).

More specifically, at each time k, let x̃w(k) and ỹw(k)
denote the simulated state and measurement vectors with
fIG,w(k − 1) = 0, i.e.,:

x̃w(k) = Axw(k − 1) +Bvvw(k − 1) +BIGcIG

+
∑21

j=1

(
Bxuj

xw(k − 1) +Bvuj
vw(k − 1)

)
· uw,j(k − 1)

ỹw = Cx̃w(k).

(7)
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Fig. 2. Estimated increase in temperature due to internal gains by zone.
Gray lines are estimates for individual weeks in the training dataset, red
lines are their averages.

By noting xw(k) = x̃w(k)+BIGfIG,w(k−1), we can estimate
fIG,w(k−1) by solving the following set of linear equations
using ordinary least-squares:

(CBIG) · fIG,w(k − 1) = ȳw(k)− ỹw(k), (8)

where ȳw(k) is the measured zone temperature at time k
from the w-th training week. Finally, the estimate f̂IG(·) is
obtained by:

f̂IG(k) =
1

8

∑8
w=1 fIG,w(k) for all k. (9)

C. Impact of Internal Gains

The estimated average increase in room temperature due
to internal gains, i.e., BIG

(
cIG + f̂IG(k)

)
is shown in red in

Figure 2. It can be observed that internal gains profiles vary
on both long and short time horizons from approximately
0◦C to 1◦C. A slightly larger increase in temperature of
approximately 1.4◦C is reported in [9] for a similar office
space. This may be because the internal gains term in their
model also includes heat gain from solar radiation, whereas
our model captures the effects of solar radiation separately.
Observe that the internal gains profiles increase during the
day, peaking in the early afternoon and then slowly decrease,
reaching a minimum at night. In addition, the profiles’
peaks are slightly lower during the weekends. These patterns
coincide with when building occupants typically come into
and leave the office.

The gray lines in Figure 2 show the same quantity es-
timated for each training week, i.e., BIG

(
cIG + fIG,w(k)

)
.

It can be observed that different zones experience different
variations in internal gains across the training weeks. The
zones West, East and Center are workspaces of students
who tend to have regular schedules and hence, more regular
internal gains patterns. On the other hand, the remaining
three zones experience more uncertainty in internal gains,
possibly due to the presence of windows, elevators and
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Fig. 3. RMS prediction error versus prediction horizon.

staircases, and known inaccuracies in the EnergyPlus input
file for zone Northwest.

The identified model with f̂IG (a fixed function) is used
to make 24-hour predictions of zone temperatures for all
3 weeks in the validation set, i.e., the state vector is esti-
mated by a Kalman Filter every 24 hours. Figure 4 shows
the results for one of these weeks and the average RMS
prediction error for all validation weeks is reported in Table
III. Furthermore, Figure 3 shows that the model’s prediction
accuracy decreases with increasing prediction horizon, which
could be explained by uncertainties in internal gains as well
as model inaccuracies. It is interesting to observe that the
RMS prediction error for zone Northwest is the largest and it
also increases the fastest as the prediction horizon increases,
which is in accordance with this zone experiencing large
variations in internal gains (Figure 2) and its geometry data
in the EnergyPlus input file being inaccurate.

V. ONLINE UPDATE OF THE INTERNAL GAINS FUNCTION

The previous section shows that the large time-varying
internal gains are difficult to capture a priori, nevertheless,
they can significantly affect our model’s prediction accuracy.
In light of this, we consider a learning based approach in this
section, where we update the internal gains function fIG(·)
online using past observations.

In other words, instead of estimating a fixed function f̂IG(·)
a priori, at every time k, we estimate fIG(k − 1) using (7)
and (8), and then use the following simple model

fIG(k) = fIG(k − 1) (10)

to obtain an online estimate of fIG(k), which is then used in
(5) to predict x(k + 1) and y(k + 1). The intuition for (10)
is that internal gains do not change significantly from time
k − 1 to k (i.e., 15 min).

This model is simulated for all 11 weeks of data, one of
which is shown in Figure 5. The average RMS prediction er-
rors are reported in Table III. Thus, by dynamically updating
fIG(·) online, the model’s prediction accuracy is improved by
36% on average compared with when a fixed internal gains
function was used.
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Fig. 4. Predicted temperature using fixed internal gains function, by zone.
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Fig. 5. Predicted temperature using online updated internal gains function,
by zone.

VI. DISCUSSION

In Section IV, we conducted excitation experiments to
actively perturb our building. Data collected during the
experiments and additional weekends is used with the ap-
proximation that the time-varying internal gains are zero, to
identify the model parameters. Then, we estimate a fixed in-
ternal gains function, fIG(·), using 8 weeks of measurements.
The resulting model is used to make 24-hour predictions of
the building’s temperature profile for 3 additional weeks, and
an average RMS error of 0.48◦C is achieved. Figures 2 and 3
suggest that our building is subject to large uncertain internal
gains which make accurate long term predictions difficult.
For buildings that are subject to fewer uncertainties, a model
identified using this procedure may achieve better prediction
accuracy.

In addition, there are several approaches that can be taken
to further enhance the model’s prediction accuracy. When
weekend data is used to identify the model parameters, more
sophisticated approximations of the occupancy function, such
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TABLE III
RMS PREDICTION ERROR BY ZONE FOR A MODEL WITH FIXED fIG AND

USING ONLINE UPDATED fIG .

NW W S E NE C Mean

Fixed fIG 0.84 0.42 0.48 0.43 0.36 0.38 0.485

Online Updated
fIG 0.50 0.31 0.15 0.41 0.32 0.16 0.308

as sinusoids, can be used. Sensors can be installed in the VAV
boxes to measure the temperature of the supply air, from the
HVAC system, downstream of the heating coils. Moreover,
occupancy sensors can be used to improve the estimate of
internal gains and hence the model’s prediction quality.

In Section V, we dynamically updated our estimate of
the internal gains function using current temperature mea-
surements. More specifically, we assume the current heating
load, due to internal gains, remains constant during the next
time step. We apply this model to make 24-hr predictions
and demonstrate that its prediction accuracy is significantly
improved (compare Figure 4 with Figure 5). In addition, us-
ing more sophisticated regression techniques and taking into
account other factors such as past heating loads and room
temperatures may further improve the prediction accuracy
and extend the prediction horizon.

For the frequency regulation application, a model is first
applied to estimate the building’s power consumption for
the next 24 hours, in order to determine its reserve capacity
for the day-ahead reserve market. MPC can then be used to
provide these reserves without violating comfort constraints.
Thus, by learning fIG(·) online and dynamically updating
it in an MPC controller, errors from the 24-hour prediction
may be corrected during reserve provision.

VII. CONCLUSIONS

We describe an approach to construct a physics-based
model of a multi-zone commercial building, which uses
experimental data measured during regular building oper-
ation. We show that large uncertainties in internal gains
present several challenges in applying the model for long
term prediction of a building’s thermal dynamics. In addition,
we show that by dynamically updating the estimates of
internal gains, the model’s prediction accuracy is improved
significantly.

Future work will investigate the trade-off between uncer-
tainty in internal gains and prediction accuracy, as well as the
necessary model complexity for a good control performance,
in particular for harnessing building flexibility. In addition,
we are working on experimentally verifying the performance
of controllers designed using our building model.
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